在世界各國,無論是公務機關或非公務機關,均無可避免地大量蒐集個人資料,這些資料包括一般民眾、雇員、顧客或潛在客戶等。對此,加拿大隱私委員會辦公室(Office of the Privacy Commissioner of Canada,簡稱OPC)發布關於「個人資料保存與處理指引文件:原則與良好實作」(Personal Information Retention and Disposal:Principles and Best Practices),以協助聯邦機構與私人機構對組織內部保有之個人資料,做好妥善保存與處理。
OPC建議組織應在內部制定相關管理政策與程序,並於指引文件中提出11項參考要點,其中包括1.是否定期審查蒐集個人資料與保有目的之關連與妥適性?多久審查一次;2.對於保有之個人資料及保存目的是否進行清查與盤點?多久確認一次?3.個人資料儲存的形式與地點為何?是否有備份?4.法律是否有規定最低保存期限?5.組織如何處理個人資料與相關備份檔案?6.對於儲存個人資料之裝置或設備,是否採行適當地安全維護措施?7.個人資料保管與處理相關政策的核決人為誰?8.對於利用資料生命週期追蹤資料,是否存在適當管制程序?9.內部員工是否了解並熟悉組織關於個人資料保存與處理之政策規定?;是否有制定文件銷毀之安全措施?10.資料等候處理期間是否受到安全妥善之保管?11.對於使用資料之第三方,是否有透過合約或其他機制進行有效監督管控措施?是否制定定期查核機制?等,期以協助組織掌握政策與程序制定要領。
2019年2月澳洲政府依據「我的健康紀錄法」(My Health Records Act 2012),執行全國國民納入「我的健康紀錄系統」(My Health Record System)(下稱系統)之政策,有將近9成的國民被納入系統,為解決急診醫師在緊急救治時,需查看病患醫療資訊的需求;澳洲數位健康局(Australian Digital Health Agency, ADHA)於2019年11月發布了一項全國倡議的政策:急診醫師能使用我的健康紀錄系統,在急迫情形下即時做診斷。因此澳洲健康安全與品質委員會(Australian Commission on Safety and Quality in Health Care)與澳洲急診醫學院(Australasian College for Emergency Medicine, ACEM)共同訂定「急診醫師使用我的健康紀錄之指引」(Emergency Department Clinicians’ Guide to My Health Record)(下稱指引)提供急診科醫師參考,說明如下: 原則上只有病患之家庭醫師或主治醫師才能進入系統查看病患的醫療資訊,其他未經同意的醫師不得隨意查看病患的醫療資訊,但若病患發生急救狀況時,則允許急診醫師得使用系統查看病患之醫療資訊,例如:使用藥物資訊、各醫師之醫療診斷書、照顧資訊、處方簽紀錄,病患用藥歷史、住院紀錄、家族病史、專家建議信(Specialist letters)、器官捐贈與預立醫療決定(Advance care plans)、病理診斷、病人自行輸入的資訊,例如過敏反應等,協助急診醫師能使用病患就醫紀錄迅速的做診斷;允許急診醫師得直接查看病患之醫療資訊,也解決急診醫師在救治時,無法即時與病患之家庭醫師聯繫問題。另外,系統之病歷電子化也為急診醫師帶來益處,例如:醫療資訊的合併,整合病患的就醫資料、減少不必要及重複的檢查,即時傳遞醫療資料等。此外,為了保障國民之資訊自主,醫師必須尊重病患的權利,例如病患得使用取消功能來刪除病歷資訊、限制特定醫療人員或醫療機構查看、限制查看資料的類型等。 這項指引使急診醫師能更了解如何使用系統、在緊急救護時,得隨時能查病歷資料做出最佳的處置、系統化的便利性為急診醫師節省許多處理時間,並促進與提升醫療品質。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
OTT影音發展與著作權-以英國為例 英國通訊傳播管理局發表「開放通訊:使人們能夠透過創新服務共享資料」,提供通訊業者建立開放通訊(Open Communications)之原則建議英國通訊傳播管理局(The Office of Communications, Ofcom)於2020年8月發布「開放通訊:使人們能夠透過創新服務共享資料」(Open Communications: Enabling people to share data with innovative services),針對開放通訊的設計原理提出七點建議: 應盡可能讓符合條件的第三方能夠近用(access)資料,同時確保用戶受到保護。 應提供客戶一些目前無法取得的資料,例如有關網路服務品質的體驗報告,以提供使用者做為未來交易時之參考。 資料的提供商和第三方必須確保資料儲存和傳輸的安全性。 第三方將如何使用有關客戶的資料及是否含有潛在風險等,皆應清楚透明地告知使用者,並且讓共享資料之使用者仍保有控制權限。 開放通訊服務之設計應符合包容性設計(inclusive design),提高使用者使用意願。 開放通訊仍應維持市場競爭。 提供資料所需的成本應與資料開放的潛在收益成比例。原則上,參與開放通訊的通訊提供者越多,對個人和小型企業的整體價值就越高。惟,若是強制要求用戶數少或是無法承擔該技術的小型提供商加入,可能導致成本與收益不成比例。 除此之外,對於應開放何種資料則須循序漸進。除了增加對第三方客戶資料近用權限之外,首先,應針對開放對資料提供者風險低,但對潛在用戶有較高利益的資料,例如:不包含個人訊息的資料,從而降低匿名化過程中所產生之風險;第二,開放低風險的地理空間資料(geospatial data),目的在於改善該地區的整體地理空間資料基礎架構。最後才是開放有關各種通訊產品中的其他資料,以促進消費者的選擇和保護。 綜上所述,考慮到開放通訊之可行性,需進一步與其他資料可攜性計劃的主要代表進行會談(如銀行業者),尋求各行業主要服務提供商的支持。再者,考慮是否訂定相關法律以及如何進行監管。第三,應標準化客戶資料,以及確保資料移動之安全性及用戶控制權限,最後則是降低資料開放之成本,以達成開放通訊所帶來之效益。