在近來國際食安問題事件頻傳的氛圍下,如何透過食品供應鏈相關資料的紀錄、串接與分析,達到食品追溯(Food Traceability)目的已成為全球性議題。有鑑於此,美國的全球食品追溯中心(Global Food Traceability Center, GFTC)在跨種類的食品供應鏈中針對數位資料的採集和追蹤,以建立共通架構為目的,提出食品追溯的「關鍵追蹤活動」以及「重點資料元素」,作為監管機構和產業界在建立追溯系統時可依循的標準。
由於現今食品供應系統涉及範圍大部分已擴及全球,其複雜性大幅提升了各國政府對整個食品產業的監管以及促進追溯實踐的困難度。隸屬美國食品科技研究所(IFT)的GFTC於2014年8月19日發表了一篇「食品追溯最佳實踐指南」(A Guidance Document on the Best Practices in Food Traceability)報告,指出當食品相關疫情爆發時進行食品追溯即有全球性的需求;該指南主要以食品安全及追溯相關規範的立法者和食品產業界為對象,針對六大類食品產業-烘焙、奶製品、肉類及家禽、加工食品、農產品和海產類提供一個可茲遵循的追蹤架構。在一條食品供應鏈中,有許多環節是進行追蹤時必要的資訊採集重點,被視為「關鍵追蹤活動」(Critical tracking events, CTEs),而各種「關鍵追蹤活動」的紀錄項目即為「重點資料元素」(Key data elements, KDEs)。
根據該指南所定義的CTEs包含:
1.運輸活動(Transportation events)-食品的外部追蹤,包括「運送活動」(Shipping CTE)和「接收活動」(Receiving CTE),指食品在供應鏈的點跟點之間藉由空運、陸運或船運等物理性的移動。
2.轉換活動(Transformation events)-食品的內部追蹤,連結食品經過各種結合、烹煮、包裝等加工的輸入到輸出過程,包括「轉換輸入活動」(Transformation Input CTE)和「轉換輸出活動」(Transformation Output CTE)。
3.消耗活動(Depletion events)-係將食品從供應鏈上去除的活動。其中,「消費活動」(Consumption CTE),指食品呈現可供顧客消費狀態的活動,例如把新鮮農產品放在零售店供顧客選購;「最終處置活動」(Disposal CTE)指將食品毀棄、無法再作為其他食品的成分或無法再供消費的活動。
而紀錄上述CTEs的KDEs例如各項活動的擁有人、交易對象、日期時間、地點、產品、品質等,應將該指南所列出之各項KDEs理解為紀錄CTEs的最基本項目。目前最大的問題是食品監管的要求和產業界執行可行性間的差距,故如何縮小此差距仍為各國政府當前最大的挑戰。
為有效降低包裝廢棄物對環境造成的汙染及不利影響,使製造商履行其B2C(business to customer)產品責任,德國以新的包裝法(Packaging Act, VerpackG)取代現行的規範(Packaging Ordinance,VerpackV),並已於2019年1月1日生效。 新包裝法VerpackG不同於VerpackV之處,在於除要求業者須加入原有的回收系統外,另授權Zentrale Stelle(Stiftung Zentrale Stelle Verpackungsregister,ZSVR)基金會作為新包裝法強制登記制度的執行單位,規範欲在德國銷售產品包裝之所有實體或網路製造商及零售商,有義務於ZSVR的數據資料庫”LUCID”註冊,才能在德國地區進行銷售,並且為全面提升透明度,乃規範於LUCID註冊之商家資訊皆屬可供大眾公開查詢。 依VerpackG規定,於2019年1月1日起未為註冊的商家,其包裝商品不能在德國上市,否則恐將臨100,000歐元之罰款;另未加入回收系統之商家,恐面臨200,000歐元之罰款。而除須註冊與回收系統的加入外,製造商及零售商尚須將以下之包裝相關資訊提供給ZSVR做比對: (一)註冊號碼(商家於資料庫註冊時,由ZSVR所提供之註冊號碼) (二)包裝材料及容積 (三)製造商履行生產者延伸責任(Extended Producer Responsibility)簽訂的包裝方案名稱 (四)與回收公司或回收系統間簽訂之契約期限 資料來源:自行繪製 圖 德國包裝法實施步驟
歐洲議會通過《人工智慧法案》朝向全球首部人工智慧監管標準邁進下一步歐洲議會通過《人工智慧法案》 朝向全球首部人工智慧監管標準邁進下一步 資訊工業策進會科技法律研究所 2023年06月26日 觀察今年的科技盛事屬ChatGPT討論度最高,將人們從區塊鏈、元宇宙中,帶入人工智慧(AI)領域的新發展。ChatGPT於2022年11月由OpenAI開發的生成式人工智慧,透過深度學習模型,理解和生成自然語言,其功能包含回答各類型問題(如科學、歷史)、生成邏輯結構之文章(如翻譯、新聞標題)、圖形、影像等內容。然而對於人工智慧的發展,究竟如何去處理人機間互動關係,對於風險之管理及相關應用之規範又該如何,或許可從歐盟的法制發展看出端倪。 壹、事件摘要 面對人工智慧的發展及應用,歐盟執委會(European Commission)早在2018年6月成立人工智慧高級專家組(AI HLEG),並於隔年(2019)4月提出「可信賴的人工智慧倫理準則」(Ethics Guidelines for Trustworthy AI),要求人工智慧需遵守人類自主、傷害預防、公平、透明公開等倫理原則。於2021年4月21日歐盟執委會提出「人工智慧法律調和規則草案」(Proposal for a Regulation Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts)(以下稱人工智慧法案),於2023年內部市場委員會(Internal Market Committee)與公民自由委員會(Civil Liberties Committee)通過並交由歐洲議會審議(European Parliament),最終《人工智慧法案》於2023年6月14日通過。後續將再歐盟理事會(Council of the European Union)與辯論協商,尋求具共識的最終文本[1]。 貳、重點說明 由於「歐盟議會通過」不等於「法案通過」,實際上歐盟立法機制不同於我國,以下透過法案內容說明的契機,概述一般情況下歐盟之立法流程: 一、歐盟立法過程 通常情況下,法案由歐盟執委會(下簡稱執委會)提出,送交歐盟理事會及歐洲議會,作為歐盟的「立法者」歐洲理事會(下簡稱理事會)與歐洲議會(下簡稱議會)將針對法案獨立討論並取得各自機關內之共識。大致上立法程序有可分為三階段,在一讀階段若理事會與議會對於執委會版本無修改且通過,則法案通過,若任一機關修改,則會進行到二讀階段。針對法案二讀若仍無法取得共識,則可召開調解委員會(Conciliation)協商,取得共識後進入三讀。簡單來說,法案是否能通過,取決於理事會與議會是否取得共識,並於各自機關內表決通過[2]。 目前《人工智慧法案》仍處於一讀階段,由於法案具備爭議性且人工智慧發展所因應而生之爭議迫在眉睫,議會通過後將與執委會、理事會進入「三方會談」(Trilogue)的非正式會議,期望針對法案內容取得共識。 二、人工智慧法案 (一)規範客體 《人工智慧法案》依風險及危害性程度分級,其中「不可接受風險」因抵觸歐盟基本價值原則禁止(符合公益目標,如重大或特定犯罪調查、防止人身安全遭受危害等例外許可)。「高風險」則為法案規範之重點,除針對系統技術穩健、資料處理及保存訂有規範外,針對人為介入、安全性等也訂定標準。 而針對高風險之範疇,此次議會決議即擴大其適用範圍,將涉及兒童認知、情緒等教育及深度偽造技術(Deepfake)納入高風險系統,並強調應遵循歐盟個人資料保護規範。此外對於社會具有高影響力之系統或社群平臺(法案以4500萬用戶做為判斷基準),由執委會評估是否列為高風險系統。針對目前討論度高的生成式人工智慧(ChatGPT),議會針對法案增訂其系統於訓練及應用目的上,應揭露其為生成式人工智慧所產出之內容或結果,並摘要說明所涉及之智慧財產權[3]。 (二)禁止項目 關於《人工智慧法案》對於高風險系統之要求,從執委會及理事會的觀點來看,原則上重點在於對弱勢的保護及生物資料辨識之權限。歐盟禁止人工智慧系統影響身理及心理,包含對於特定族群如孩童、身心障礙者等弱勢族群之不平等待遇。同時原則禁止即時遠端的生物辨識利用,包含對於人性分析、動作預測等對於人類評價、分類之應用,例外情況如犯罪調查、協尋失蹤兒童、預防恐怖攻擊、關鍵基礎設施破壞等情況時方被允許。此次議會決議提高禁止即時遠端生物辨識的標準,包含納入敏感資訊的蒐集如性別、種族、政治傾向等,及其他臉部辨識、執法、邊境管制、情緒辨識等項目[4]。 參、事件評析 有關《人工智慧法案》雖歐洲議會已一讀通過,然而後續仍要面對與歐盟理事會的協商討論,並取得共識才能規範整個歐盟市場。因此上述規範仍有變數,但仍可推敲出歐盟對於人工智慧(含生成式)的應用規範態度。在面對日新月異的新興科技發展,其立法管制措施也將隨著橫向發展,納入更多種面向並預測其走向趨勢。因人工智慧有應用多元無法一概而論及管制阻礙創新等疑慮,觀察目前國際上仍以政策或指引等文件,宣示人工智慧應用倫理原則或其風險之管理,偏重產業推動與自律。 觀察歐盟《人工智慧法案》之監管目的,似期望透過其市場規模影響國際間對於人工智慧的監管標準。倘若法案後續順利完成協商並取得共識通過,對於如OpenAI等大型人工系統開發商或社群平臺等,若經執委會評估認定為高風險系統,勢必對於未來開發、應用帶來一定衝擊。因此,歐盟對於人工智慧監管的態度及措施實則牽一髮而動全身,仍有持續觀察之必要。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The AI Act, Future of Life Institute, https://artificialintelligenceact.eu/developments/ (last visited Jun. 20, 2023) [2]The ordinary legislative procedure, Council of European Union, https://www.consilium.europa.eu/en/council-eu/decision-making/ordinary-legislative-procedure/ (last visited Jun. 19, 2023) [3]EU AI Act: first regulation on artificial intelligence, European Parliament, Jun. 14, 2023, https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence (last visited Jun. 21, 2023) [4]MEPs ready to negotiate first-ever rules for safe and transparent AI, European Parliament, Jun. 14, 2023, https://www.europarl.europa.eu/news/en/press-room/20230609IPR96212/meps-ready-to-negotiate-first-ever-rules-for-safe-and-transparent-ai(last visited Jun. 21, 2023)
澳洲政府通過身分核驗服務法及其相應修正案澳洲政府於2023年12月通過身分核驗法(Identity Verification Services Act 2023,以下稱IVS法)及其相應修正案(Identity Verification Services (Consequential Amendments) Act 2023,以下稱修正案)。聯邦政府考量IVS法案將影響既有法規,同時提交修正案,兩法案旨在建構身分核驗服務架構,促進驗證流程之監管與透明化。澳洲政府規劃之數位身分系統正逐步法制化,IVS法與同年11月通過之法定聲明修正案(Statutory Declarations Amendment Act 2023)將為該系統奠定基礎。修正案涉及2005年澳洲護照法,以下僅簡要介紹IVS法之驗證服務內涵。 該法規定三項聯邦政府部門可提供之身分驗證服務:文件核驗服務(Document Verification Service, DVS)、臉部核驗服務(Face Verification Service, FVS)與臉部識別服務(Face Identification Service, FIS),並授權相關部門發展對應之認證設施,以電子通訊方式確認身分核驗請求。請求身分驗證服務需獲個人明確同意並告知相關權利後方可進行,其驗證型態分為:核驗(Verification)與識別(Identification),前者涉及確認個人為所宣稱之身分的過程,以一對一比對回傳個人所稱是否為真;後者則為識別個人身分之過程,透由多人或多份文件逐一比對後回傳個人身分。文件核驗使用頻率及範圍最廣泛,公、私部門皆可申請使用;臉部核驗目前僅聯邦政府有使用權限,地方與州政府及私部門未來將可透過書面協議參與。臉部識別因其驗證方式涉及個資使用與隱私議題,請求者限於證人保護機構、執法或情報人員。 IVS法案及其相應修正案於2023年9月提送國會討論,同年12月經參、眾兩院通過。法案審議期間曾有倉促立法的爭議,有論者認為當局急於為公、私部門行之有年的身分核驗行為提供法規依據,並安排極短的法案辦論時間以限縮討論。
JST(日本科學技術振興機構)發表關於大學智財的政策建言於回顧過去10多年來在大學智慧財產相關的政策措施以後,日本科學技術振興機構(JST)智慧財產戰略中心於7月5日就「政策建言-回首長達十多年的大學智財相關政策措施並探求今後的發展」總結作出發表。根據外識學者專家所組成的JST智慧財產戰略委員會所作成的研議,其就大學智財此後所追求的目標願景,以及為達成該願景各個部門(政府、大學、技轉中心與JST)各自所應扮演的角色提出了整體的建議。 在建言中提到,大學智財的目標願景乃在於「以未來運用為導向擬定智財策略」與「確保研究成果轉化智慧財產,積極回饋國民社會」,並列舉各部門為達成目標願景所應執行之任務。 建言中主要提到的各部門任務如下所述: 【日本政府的任務】 ‧對於大學的智財評價,不應只限授權金收入,也應考慮共同研究、創新育成(由大學孕育而生的新創企業)的創出效果。 ‧應建構於獲得革新性的研究成果時,能夠搶先取得基礎專利、強化週邊專利的策略性的、機動性的強而有力的智財支援體制。 【日本大學、技轉中心的任務】 ‧為創造強勢的專礎專利,應能確保具備優秀判斷力的人材,與應進行充分的先前技術檢索。 ‧應以大學成果的早期實用化為導向,推進與中小、新創企業的合作關係。 ‧思考大學間、技轉中心間多樣而有效果的合作形態,積極謀求提升技轉機會。 ‧強化對學生與研究者的智財教育與智財進修。 【JST的任務】 ‧研析早期而積極的智財發掘與迅速而機動的資金投入等等主動性的支援模式。 ‧進行熟悉海外技術移轉的專業人材的配置與培育,且就對大學專利之權利侵害提供設置諮詢窗口等的支援措施。 ‧促進大學閒置專利的海外技術移轉。 ‧研議於鉅額資金投入而有多數大學、企業參與之特定大型計劃的場合,不受日本版the Bayh-Dole Act條款的限制,而由特定公共的機關等執行專利的管理。