經濟部預告試辦自願性綠色電價計畫(草案)

刊登期別
第26卷第7期,2014年07月
 

※ 經濟部預告試辦自願性綠色電價計畫(草案), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6647&no=66&tp=1 (最後瀏覽日:2025/08/20)
引註此篇文章
你可能還會想看
歐盟通過《歐盟綠色債券規則》,建立綠色債券監管框架

歐盟於2023年10月11日發布《歐洲綠色債券監管及環境永續債券市場與永續連結債券自願性揭露規則》(Regulation on European Green Bonds and optional disclosures for bonds marketed as environmentally sustainable and for sustainability-linked bonds,下稱《歐洲綠色債券規則》),預計於2023年12月20日生效,針對在歐盟境內發行之綠色債券建立一套監管框架,課予欲使用「歐洲綠色債券」(European Green Bond)或「EuGB」等名稱發行環境永續債券的發行人一定義務,促進綠色債券的一致性和可比性,以保障投資人。綠色債券是發展綠色技術、能源效率和提升資源運用以及其他永續相關基礎設施投融資的主要工具之一,本規則之通過也被視為落實歐盟永續成長融資策略以及向碳中和、循環經濟轉型的一大進展。 《歐洲綠色債券規則》規範重點如下: 1.資金用途限制:《綠色債券規則》所有透過歐盟綠色債券募得的資金,原則上均必須投資於符合《歐盟永續分類標準》(EU Taxonomy)技術篩選標準的永續經濟活動,只有在所欲投資的經濟活動類別尚未被納入該標準時得為例外,且以總額之15%為限; 2.資訊揭露:綠色債券之發行人有義務揭露該債券之概況介紹(Factsheet)、資本支出計畫、資金使用分配報告、衝擊報告,並於債券公開說明書敘明資金用途,並得選擇進一步說明該債券之資金如何與自身企業整體環境永續目標相結合; 3.外部審查:前述資訊均須由已向歐洲證券與市場管理局(European Securities and Markets Authority)註冊之外部機構進行審查,以確保其準確性及可靠性。

全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

臺積電於美國專利訴訟勝訴

  纏訟四年後,臺灣積體電路製造股份有限公司及其北美子公司(臺積電),在與美國Ziptronix公司之專利訴訟中獲得勝訴判決。   同為半導體公司的Ziptronix於2010年起訴主張臺積電所製造,主要用於智慧型手機相機的背照式CMOS影像感測器晶片,侵害該公司9項專利及超過500項申請專利範圍。   依據美國專利法第271條(a)項,除該法另有規定外,於專利權存續期間,未經許可於美國境內製造、使用、要約銷售,或銷售已獲准專利之發明產品,或將該專利產品由外國輸入至美國境內,方屬侵害專利權。因此本案中,臺積電即以美國專利法不適用於美國境外之製造、銷售為由,向法院聲請駁回原告Ziptronix公司之訴。承審法官同意臺積電簡易判決(summary judgment)的聲請,並於10月底作出判決。   臺積電於訴訟中成功主張涉訟晶片的製造及銷售交貨行為皆在臺灣完成。承審法官更指出,縱使如原告Ziptronix公司所言,臺積電相關契約皆於美國境內協商及簽訂,但因為該等契約本來就計畫於海外履行,因此臺積電的涉訟晶片仍非於美國境內銷售。

「亞馬遜公司(amazon)」積極向美國政府機關推動其所開發的人臉辨識軟體“Rekognition”,將可能造成隱私權的重大侵害

  亞馬遜公司所開發的“Rekognition”軟體可以進行照片中的人臉辨識識別,單張圖片中可辨識高達一百人,同時可以圖片進行分析及比對資料庫中的人臉長相。目前亞馬遜公司積極向政府機關推銷這套軟體。可能造成的風險是,公權力機構可透過使用“Rekognition”軟體來辨識或追蹤任何個人,警察機關可以隨時監控人民的行為,各城市的政府機關也可能在無合理理由的狀況下隨時查看人口居住狀況,尤有甚者,美國移民及海關執法局(Immigration and Customs Enforcement, ICE)可以使用該軟體來監控移民的狀況,即使是無任何犯罪疑慮的狀況下亦可進行,將政府打造成巨大的監控系統,有造成隱私權嚴重侵害的疑慮。因此無論亞馬遜公司內外都有反對將“Rekognition”軟體推銷給政府機構的聲浪,尤其美國公民自由聯盟(American Civil Liberties Union, ACLU)更是發起多項連署抗議。   支持政府使用“Rekognition”軟體的意見則認為,使用“Rekognition”軟體將可以更有效率地辨識人臉,在尋找失蹤兒童或在公共中辨識出恐怖份子可以發揮更大的作用,不啻是保護公眾法益的進步。   佛羅里達的奧蘭多市警察機構曾經使用“Rekognition”軟體後因契約到期而一度停止使用,於7月9日與亞馬遜公司續約繼續測試使用該軟體,奧蘭多市警察機構宣稱以目前測試階段將不會使用一般民眾的照片進行測試,將不會造成人民的隱私權侵害。

TOP