隨著越來越多學校使用線上教育技術產品發展教學課程,並透過第三方服務提供者之技術蒐集學生的學習進度等相關資訊,資訊洩漏、駭客入侵、敏感資訊誤用或濫用等問題也因應而生。於2014年9月30日,加州州長Jerry Brown宣布幾項對加州居民隱私保護具有重要突破的法案,其中最引人關注的便是編號SB1177號法案,又稱學生線上個人資料保護法案(the Student Online Personal Information Protection Act,簡稱SOPIPA)。
SOPIPA禁止K-12學生線上教育服務經營者(operator)為下列行為,包括:(一)禁止線上教育服務經營者利用因提供服務所得之個人資料為目標行為(targeted marketing)、(二)禁止線上教育服務經營者基於非教育目的,運用因提供服務所得之個人資料為學生資料之串檔、(三)販賣學生之資訊、以及(四)除另有規定,禁止披露涵蓋資訊(covered information)。所稱之涵蓋資訊係指由K-12教育機構之雇員或學生所提供或製作之個人化可識別資訊(personally identifiable information),或是線上教育服務經營者因提供服務所得之描述性或可識別之資訊(descriptive or identifiable information)。
此外,SOPIPA線上教育服務經營者應採取適當安全的維護措施,以確保持有之涵蓋資訊的安全。同時,線上教育服務經營者應在有關教育機構的要求下,刪除學生之涵蓋資訊。
SOPIPA預計於2016年1月1日生效,將適用於與K-12學校簽有契約之大型教育技術與雲端服務提供者,同時也將適用於未與K-12學校簽署契約,但為該學校所使用之小型K-12技術網站、服務或APP等等。歐盟執委會於2021年7月14日公布一系列有關再生能源、能源效率、交通運輸、財稅政策、碳交易機制等議題之立修法提案。提案目的是希望整體制度能更加有助於歐盟氣候法(European Climate Law)中所設定減碳目標達成,於2030年減少相當於1990年55%的排碳量,故被稱為「Fit for 55」。 執委會為達成減碳目標,具體提案內容如下: (1)能源效率:修正《能源效率指令》(Energy Efficiency Directive),設定2030年能源消耗減少36~39%目標,並要求每年更新公部門建物至少3%,以提升能源效率; (2)再生能源:修正《再生能源指令》(Renewable Energy Directive),目標增加2030年的再生能源使用比例達現在的40%; (3)交通運輸:於陸路運輸,透過修正《小客車與輕型商用車新車二氧化碳排放規則》(Regulation setting CO2 emission standards for cars and vans),針對出廠新車制定2030年汽車55%、廂型商用車50%、2035年所有新車100%之減碳目標,並配合《替代燃料基礎設施規則》(Alternative Fuels Infrastructure Regulation)之修正,明訂高速公路每60公里設置充電站、150公里設置加氫站,以提供低碳運具之需求;於空運,歐盟航空永續燃料倡議(ReFuelEU Aviation Initiative),要求航空能源供應商增加永續燃料比例;針對海運,則透過歐盟海事燃料倡議(FuelEU Maritime Initiative),針對結合永續燃料與零排放科技的結果進行模擬,並設定最高排碳量。 (4)財稅政策:制定《碳邊境調整機制》(Carbon Border Adjustment Mechanism),針對被選定的目標產品(包含:水泥、電力、肥料、鋼鐵、鋁)訂定碳價格,於其自境外輸入時課徵稅費,以解決碳洩露問題;修正《能源稅指令》(Energy Taxation Directive),調整能源相關產品稅收計算方式、刪除不合時宜的規定,透過稅收調整能源使用之誘因,以貼近減碳需求。 (5)碳交易機制:修正《溫室氣體排放交易指令》(EU Emission Trading System Directive)擴大碳交易機制適用對象,納入海運、燃料供應中心,同時要求會員國應將碳交易所得,全數用於氣候能源相關計畫,以補足當前財務上的缺口。 總結而言,歐盟「Fit for 55」政策為使整體制度更符合2030年55%的減碳目標,透過個別部門減碳目標之設定、替代燃料之推動、財政誘因之調整等三種手段,希望多方面對減碳做出貢獻,以加速減碳的進程。
Angie's List起訴Amazon Local侵害營業秘密消費者評論服務Angie's List於本月在印第安納州提起一項聯邦訴訟,對象是Amazon Local。Angie's List作為當地交易網站,提供高達75%的本地服務,包括產品和使用經驗。但Amazon Local員工卻通過註冊成為Angie's List的會員,以獲得其他會員名單和下載網站所提供的文件,也包括其他會員的評論和相關資訊。因此20餘名Amazon Local員工被列為共同被告。 該訴訟聲明中指控相關資訊被Amazon Local所使用,用以在西雅圖建立一個競爭性的服務。Angie's List在訴訟中指稱,他在會員協議“明確禁止使用Angie's List的帳戶和資料用於商業目的”,但Amazon Local員工卻違反了契約。“Amazon Local沒有投入必要的時間,資源和合法手段發展自己的研究與Angie's List競爭,相反的,Angie's List和它的員工都選擇了秘密訪問和挪用Angie's List專有信息的快捷方式。 Angie's List指控Amazon Local違反商業機密,竊盜,侵入電腦,民事侵權,電腦欺詐與濫用盜用行為和違反契約。Angie's List請求法院判決Amazon Local賠償其損失,並禁止Amazon Local再使用Angie's List,包括已經得到的資訊。Angie's List也請求未規定的損害賠償,“不當得利”和懲罰性的和其他損害。
英國與美國為人工智慧安全共同開發簽署合作備忘錄英國技術大臣(U.K. Secretary of State for Science)蜜雪兒·多尼蘭(Michelle Donelan)和美國商務部長(U.S. Secretary of Commerce)吉娜·雷蒙多(Gina Raimondo)於2024年4月1日在華盛頓特區簽署一份合作備忘錄(MOU),雙方將共同開發先進人工智慧(frontier AI)模型及測試,成為首批就測試和評估人工智慧模型風險等進行正式合作之國家。 此備忘錄之簽署,是為履行2023年11月在英國的布萊切利公園(Bletchley Park)所舉行的首屆人工智慧安全峰會(AI Safety Summit)上之承諾,諸如先進AI的急速進步及濫用風險、開發者應負責任地測試和評估應採取之適當措施、重視國際合作和資訊共享之必要性等等,以此為基礎羅列出兩國政府將如何在人工智慧安全方面匯集技術知識、資訊和人才,並開展以下幾項聯合活動: 1.制定模型評估的共用框架(model evaluations),包括基礎方法(underpinning methodologies)、基礎設施(infrastructures)和流程(processes)。 2.對可公開近用模型執行至少一次聯合測試演習(joint testing exercise)。 3.在人工智慧安全技術研究方面進行合作,以推進先進人工智慧模型之國際科學知識,並促進人工智慧安全和技術政策的一致性。 4.讓英、美兩國安全研究所(AI Safety Institute)間的人員互相交流利用其團體知識。 5.在其活動範圍內,依據國家法律、法規和契約規定來相互共享資訊。 換言之,兩國的機構將共同制定人工智慧安全測試之國際標準,以及適用於先進人工智慧模型設計、開發、部署、使用之其他標準。確立一套通用人工智慧安全測試方法,並向其他合作夥伴分享該能力,以確保能夠有效應對這些風險。就如英國技術大臣蜜雪兒·多尼蘭強調的,確保人工智慧的安全發展是全球性問題,只有通過共同努力,我們才能面對技術所帶來的風險,並利用這項技術幫助人類過上更好的生活。
美國馬里蘭州法案禁止雇主近用(access)其員工及應徵者之社群網站資訊日前報導指出,在美國有部分的企業在面試時要求應徵者交出其臉書(Facebook)帳號及密碼,以供企業做為評估是否錄取之參考。企業這樣的舉動,遭論者類比為要求應徵者交出自家大門的鑰匙。據悉,企業此一傾向在九一一後有明顯增加之趨勢。 為因應此一趨勢所帶來的隱私疑慮,馬里蘭州在四月初已立法(撰稿時,此法尚待該州州長簽署)禁止雇主要求瀏覽或進入員工與應徵者的臉書或其他社交網站頁面,當然也包括禁止雇主取得員工或應徵者的臉書或社交網站帳號與密碼,或企圖成為員工及應徵者的「朋友」。 馬里蘭州此一立法,除了在保護員工或求職者的隱私之外,也是為了保障言論自由;且此一看似亦在保護應徵者及員工之法律,其實對企業亦有助益:其使原本處於法律灰色地帶的爭議問題明朗化,因而可使企業瞭解應如何因應,而可避免許多不必要的訴訟。 雖然輿論對此立法有許多贊同之聲,但亦不乏反對此一立法者,例如馬里蘭州的許多商業團體即認為瞭解求職者的社交活動,對於剔除不適任的應徵者,有其必要。 馬里蘭州此一立法乃率全美之先,其他各州可能亦陸續會提出類似法案。