美國農業部(United States Department of Agriculture, USDA)於今年2014年8月就現代化肉禽屠宰檢驗規定(Modernization of Poultry Slaughter Inspection)再新增肉禽屠宰相關行政管制規範,稱為新肉禽檢驗系統(New Poultry Inspection System, NPIS),藉此改進現行的肉禽檢驗系統(poultry inspection system)。該規定係美國於1957年為補充艾森豪總統簽署之肉禽產品檢驗法(Poultry Products Inspection Act of 1957)所制定,為美國國內現行肉禽檢驗系統之法源依據,由隸屬於USDA的食品安全檢驗服務(Food Safety and Inspection Service, FSIS)負責執行該規定所要求之相關肉禽食品安全稽查。但近年來各國陸續發生重大食安問題,加以該規定自1957年後,已制定60年之久,實有許多應檢討修正之處。適逢美國總統發布執行命令13563號(E.O. no.13563)要求各行政機關檢視並改進相關規範,以減輕肉禽產品遭受微生物汙染之風險,並整合政府相關行政資源提升行政檢驗效能及適時移除現行法規造成產業創新的制度性障礙。而該規範之新肉禽檢驗系統(new poultry inspection system, NPIS)目前僅適用於幼小雞隻的肉品和火雞肉之生產,且不會全面汰換掉現行的各項檢驗系統,由廠商進行成本效益分析是否將該新檢驗系統導入生產體系。新規定簡要介紹包括要求於冷凍程序前後需進行含菌量檢驗,且廠商必須發展、建立、維護此一管理作業流程,以確保肉品未受到汙染;此外,亦增訂其他規定,如限制生產線上每分鐘不得屠宰超過140隻肉禽、移除冷藏溫度之相關標準,改採廠商必須藉由實驗和技術支援等,反覆檢驗以實質判定其冷藏管理程序中實際合理之冷藏溫度,FSIS更重新定義規範中關於冷藏之定義,以符合產業現況。新規定目前已公告於聯邦公報(Federal Register),將於六個月後正式生效。
本文為「經濟部產業技術司科技專案成果」
歐盟於2015年5月9日在拉脫維亞的里加舉辦了為期一週之「eHealth Week」研討會,包含由歐盟輪值理事會主辦之高階eHealth會議,以及由歐洲HIMSS (Healthcare Information and Management Systems Society)主辦之「WoHIT (World of Health IT Conference & Exhibition)」兩大活動,而2015歐洲mHealth高峰會為其中備受矚目的重要主題活動。該高峰會以推動歐洲mHealth進程之執行為領導思考核心,相關利害關係者(包括公部門、ICT產業、健康保健專業學者)於5月12日以mHealth綠皮書公眾諮詢結果為基礎,針對歐盟目前執行中以及未來可能採取之政策為討論,主要議題包括:1.所蒐集資料之隱私與安全保護。2.生活康樂型apps產品之安全性與品質管控。3.網路經營者對於mHealth市場之進入障礙。 針對資料之隱私與安全保護議題,公眾諮詢結果顯示,關鍵問題在於mHealth apps蒐集使用者資料是否有足夠的隱私與安全保障措施?與會者並認為此問題在資料的第三人再利用情形尤為重要。對此歐盟執委會表示將展開就mHealth apps訂定以產業為主導、範圍涵蓋資料隱私與安全性之行為守則,以建立使用者對mHealth apps之信任感,並提升app開發者對歐盟資料保護法規之遵法意識。 針對生活康樂型apps(包括健康照護相關app)產品之安全性與品質管控議題,透過與會者現場意見調查顯示,認為健康照護相關apps之安全性、品質與可靠性由於欠缺臨床佐證,導致就apps的目的與功效會有錯誤的宣示。值得注意的是,制定法規控管並非多數意見,大多數與會者認為以訂定指引或標準的方式,作為生活與康樂型apps的安全性與品質之依循方針較為妥適。對此歐盟執委會表示會持續跟進此議題並與相關利害關係者討論下一步之行動。 針對網路經營者進入歐盟mHealth市場議題,與會者認為網路經營者將面臨複雜的進入障礙,諸如歐盟相關法規架構的不清與零散、mHealth方案與設備的互通性與開放標準的欠缺等。歐盟執委會明確表示,支持網路經營者進入mHealth市場,目前歐盟正在進行的「Startup Europe」等相關倡議措施,即是以強化網路及資通訊業者商業環境為目的,提供網路經營者法規諮詢、投資媒合、商業模式育成等協助,以降低網路經營者所面對之市場進入門檻並有機會展現其新創能量。
英國商業、能源及產業策略部提出新版「後2020智慧電表布建計畫」,以助於住家型智慧電表全面布建英國商業、能源及產業策略部(Department of Business, Energy and Industrial Strategy,以下簡稱BEIS)於2020年6月18日提出新版「後2020智慧電表布建計畫」(Smart meter policy framework post 2020,以下簡稱旨揭智慧電表計畫),擬於未來4年內全面布建住家型智慧電表,以助於住家型用電戶管理用電並進一步減低碳排放量。 依BEIS預估,布建後有可能助於節省住家型用電戶平均250英鎊之電費,並減少全國4千5百萬噸碳排放量。依旨揭智慧電表計畫,電表布建費用將由售電業負擔,售電業應盡其最大努力布建智慧電表,如售電業並未盡到此一義務,則恐將面臨高額罰鍰。同時,智慧電表之布建可以鼓勵消費者改變用電習慣,如鼓勵消費者於用電離峰時間對於電動載具進行充電,或者是設置(再生能源)發電設備用於用電高峰期間發電、饋電至電網。 從而BEIS旨揭智慧電表計畫,也是為BEIS於2019年1月提出智慧饋電保證(Smart Export Guarantee,以下簡稱SEG)鋪路。於SEG新政策下,BEIS將擬定一套不同於躉購制度之政策框架,使小型生產消費者(prosumer,此處係指可以自行生產電力之用電戶)所生產之綠色電力,可於此一政策框架之保障下,與售電業者議約,並將電力售予售電業者,以減輕英國政府預計於今年3月廢除躉購制度所帶來之衝擊。又依SEG新政策,小型生產性用電戶須設置有智慧電表,始受前開SEG新政策之保證,從而得以優惠之價格或條件將再生能源設備所產生之電力出售予電力供應事業主體。職是故,BEIS旨揭智慧電表計畫,實際上可謂與BEIS於2019年所提出SEG新政策相互搭配,以迎接後躉購制度時代之來臨。 對於智慧電表之硬體規格,依旨揭智慧電表計畫,第二代智慧電表(SMETS2)為其建置之核心。第二代智慧電表與第一代智慧電表不同之處在於,第一代智慧電表係以3G為通訊基礎,且不同電力供應事業主體所使用之系統相互間無法交流、並存,第二代智慧電表則以4G以上規格為通訊基礎,且不同電力供應事業係使用同一套系統。同時,智慧電表應盡量配置有「住家顯示系統」(In-Home Displays),使住戶可以透過視覺化之及時反饋方式,知悉現在住家內之能源使用情形以及相關電價狀況,從而進行改變用電習慣。同時,智慧電表之用電或饋電至電網之資訊,也應可以透過智慧電表傳輸至電力供應事業主體或交易市場,從而使電力供應事業主體可及時知悉用電戶之用電或饋電情形,從而及時做出反應。 對於智慧電表之建置程序以及資訊傳輸、保存安全性上,旨揭智慧電表計畫則要求應符合「智慧電表建置行為準則」(The Smart Meter Installation Code of Practice, SMICoP),從而用電戶可以在此一準則或框架下,對於自己之用電資料享有一定之掌握權限。
日本發布《IoT產品資安符合性評鑑制度建構方針》順應國際IoT產品資安政策趨勢日本經濟產業省於2024年8月23日發布《IoT產品資安符合性評鑑制度建構方針》(IoT製品に対するセキュリティ適合性評価制度構築方針),以順應國際IoT產品資安政策趨勢,因應日益嚴重的資安威脅。 本制度為自願性認證制度,由情報處理推進機構(情報処理推進機構,簡稱IPA)擔任認證機構進行監督。以IoT產品為適用對象,制定共通因應資安威脅之最低標準,再依不同產品特性需求,制定不同符合性評鑑等級,依評鑑結果進行認證,授予認證標章。不同評鑑等級差異如下: 1.等級一:為共通因應資安威脅之最低標準,可由供應商進行自我評鑑,並以評鑑結果檢查清單申請認證標章,IPA僅會針對檢查清單進行形式確認。 2.等級二:係考量產品特性後,以等級一為基礎,制定應加強之標準,與等級一相同係由供應商評鑑,自我聲明符合標準,IPA僅會針對檢查清單進行形式確認。 3.等級三:係以政府機關或關鍵基礎設施業者為主要適用對象,須經過獨立第三方機構評鑑,並以IPA為認證機構進行認證,確保產品值得信賴。 本制度可協助採購者及使用者依資安需求,選用合適的IoT產品,亦有助於日本與國際IoT產品資安符合性評鑑制度進行協作,達成相互承認,減輕IoT產品供應商輸出海外之負擔。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。