美國農業部(United States Department of Agriculture, USDA)於今年2014年8月就現代化肉禽屠宰檢驗規定(Modernization of Poultry Slaughter Inspection)再新增肉禽屠宰相關行政管制規範,稱為新肉禽檢驗系統(New Poultry Inspection System, NPIS),藉此改進現行的肉禽檢驗系統(poultry inspection system)。該規定係美國於1957年為補充艾森豪總統簽署之肉禽產品檢驗法(Poultry Products Inspection Act of 1957)所制定,為美國國內現行肉禽檢驗系統之法源依據,由隸屬於USDA的食品安全檢驗服務(Food Safety and Inspection Service, FSIS)負責執行該規定所要求之相關肉禽食品安全稽查。但近年來各國陸續發生重大食安問題,加以該規定自1957年後,已制定60年之久,實有許多應檢討修正之處。適逢美國總統發布執行命令13563號(E.O. no.13563)要求各行政機關檢視並改進相關規範,以減輕肉禽產品遭受微生物汙染之風險,並整合政府相關行政資源提升行政檢驗效能及適時移除現行法規造成產業創新的制度性障礙。而該規範之新肉禽檢驗系統(new poultry inspection system, NPIS)目前僅適用於幼小雞隻的肉品和火雞肉之生產,且不會全面汰換掉現行的各項檢驗系統,由廠商進行成本效益分析是否將該新檢驗系統導入生產體系。新規定簡要介紹包括要求於冷凍程序前後需進行含菌量檢驗,且廠商必須發展、建立、維護此一管理作業流程,以確保肉品未受到汙染;此外,亦增訂其他規定,如限制生產線上每分鐘不得屠宰超過140隻肉禽、移除冷藏溫度之相關標準,改採廠商必須藉由實驗和技術支援等,反覆檢驗以實質判定其冷藏管理程序中實際合理之冷藏溫度,FSIS更重新定義規範中關於冷藏之定義,以符合產業現況。新規定目前已公告於聯邦公報(Federal Register),將於六個月後正式生效。
本文為「經濟部產業技術司科技專案成果」
美國最高法院在2016年2月9日,以暫時處分裁定美國環保署在「清潔電力計畫」(Clean Power Plan)下所擬訂的「對固定污染源的碳排指引:電業發電單位」( Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units ),在北新(Basin)電力公司等對其所提起訴訟期間,暫緩實施。 所謂環保署「清潔電力計畫」(Clean Power Plan),係為因應氣候變遷,在2015年8月由美國總統在演說中公布,並於同年10月由美國環署公布「對固定污染源的碳排指引:電業發電單位」最終內容。該計畫的具體目標乃以2005為標準,在2030減少碳排32%,各州並得自行訂訂計畫;預期的計畫效果則包含:保護一般的美國家庭、促進經濟,與協助一般美國家庭節省費用。 由於該案涉及大規模以天然氣、風力與太陽能取代燃煤電廠,2015年的10月23日至11月5日間,由北新與其他近60家電業向聯邦哥倫比亞特區上訴法院(United States Court of Appeals for the District of Columbia Circuit)提出申請暫緩實施之聲請。2016年1月21日 該上訴法院駁回聲請,同月26日原本提出聲請的電業再向最高法院提出暫緩實施之聲請。 在向最高法院的聲請中,業者主張:因系爭指引所規範排放限制量為任何現行發電業者(Electricity Generating Units, EGUs)無法透過現行科技或流程改善單獨達成,將迫使整個電力產業作出轉變。業者並指出,由於淘汰既有電廠與建立新的再生能源計畫皆須長時間的努力來執行,若欲在2022年達成相關目標,電業必須現在就展開行動。 而最高法院也認同業者的主張,指出:因訴訟曠日廢時,若不暫緩實施系爭指引,立即、無法回復、且特別重大的損害將持續發生;且美環署仍將取得該計畫所欲取得之效果,縱使系爭指引最終被廢止。 基於上述理由,最高法院以暫時處分裁定系爭措施暫緩實施。
美國華府行政管理與預算辦公室頒布Open Data政策備忘錄之執行指導綱要美國華府行政管理與預算辦公室(Office of Management and Budget)頒布執行M-13-13 Open Data政策備忘錄之指導綱要(Supplemental Guidance on the Implementation of M-13-13 “Open Data Policy-Managing Information as an Asset”),目的在於澄清問題及提供執行細節以協助政府部門實施執行命令第13642號及M-13-13 Open Data政策備忘錄。透過實踐本指導綱要,各政府部門將能確保用以盤點、管理及開放資料的基礎設施之完備,進而開創因開放資料所產生之價值。 資料在依據本綱要進行盤點時,主管機關必須一併予以分級,其近用層級(Access Levels),區分為公開(Public)、限閱(Restricted Public)、非公開資料(Non-public)。資料公開前會經過完整之隱私權保護及資訊安全事項檢視,無違反相關法律和政策規範者,始釋出予大眾。 針對備忘錄之五項執行要求,本指導綱要即分為五項對應指導,介紹如下: 1.建立及維運大型資料盤點目錄:目的在使聯邦政府部門建立清楚且完整之資料資產目錄,而在製作盤點目錄後,必須持續改進、維護資料,並以擴展、豐富、開放三種面向來評估檢視盤點目錄之成熟度。 2.建立及維運公開資料清單:為增進資料查詢之容易度及可用性,各部門須篩選上述資料盤點目錄中屬於公開層級或可以被公開之資料,並建立及發布公開資料清單,作為盤點目錄之子目錄,使民眾得以知悉現有公開資料,及接續地將被公開之資料。各部門基於裁量權,亦可決定是否列入限閱或非公開資料資產,使民眾能知悉該筆資料之存在以及近用該資料之程序。 3.建立用戶參與資料釋出程序:此程序將提供資料用戶參與促進資料釋出及認定釋出之優先順序。由關鍵的資料用戶來幫助聯邦政府認定資料資產價值,而被認定最高價值之資料將優先、快速釋出。 4.當資料無法釋出時,須以文件證明:政府部門必須確認資料經過完整之隱私權保護及資訊安全事項檢視,無違反相關法律和政策規範者,才能公開資料。當認定資料涉及違反上述規範時,則須以文件證明其諮詢該政府部門中所設之法律顧問單位(Office of General Counsel)或同類單位後之決定,再依據三種資料近用資層級予以分類。 5.指導綱要中要求列出各部門應該負責管理資訊之窗口。 原定11月1日為完備上述基礎設施建置之最後期限,然為因應美國自10月1日起聯邦政府關門,特寬限延期至11月30日;在11月30日後,各部門將於每季報告執行進展,而部門開放資料之績效將被列為跨部門優先追蹤對象。
歐洲網路與資訊安全機構和歐洲標準化機構針對網路安全簽訂合作協議歐洲網路與資訊安全機構(European Network and Information Security Agency,簡稱ENISA)為了支持網路安全商品和服務進行標準化,於今年七月九日和歐洲標準化委員會(European Committee for Standardization,簡稱CEN)與歐洲電工技術標準化委員會(European Committee for Electrotechnical Standardization,簡稱CENELEC)共同簽署合作協議,來強化網路安全標準化的各項措施。 本合作協議的目的,在於能夠更有效地了解與解決網路和資訊安全標準化的議題,特別是處理和ENISA有所關連的不同訊息和通信技術(ICT)部門。本次簽署的合作協議,可視為是近來ENISA制定新法規的額外延伸,其將給予ENISA針對支持網路資訊安全(NIS)標準的發展,有更多積極的角色。本合作協議涉及的範圍包含下列情況: ‧ENISA於識別技術委員會(identified technical committees)作為觀察人,CEN與CENELEC的工作小組與講習作為支持歐洲標準的準備 ‧CEN與CENELEC評估ENISA相關的研究成果,並且將其轉化成標準化活動 ‧ENISA參與或適當地擔當依據CEN-CENELEC內部規章所組成的相關技術委員會、工作小組與講習之主席 ‧散布和促進出版物、研究結果、會議或研討會之消息流通 ‧對於促進活動與因NIS標準相關工作之商業聯繫建立和研究網絡提供相互支持 ‧針對處理攸關NIS標準活動的科技和研究議題,舉辦各項局部工作小組、會議和研討會 ‧針對共同利益確定之議題作相關資訊交換 有鑑於ENISA逐漸強調NIS標準化的相關工作,標準化不僅能改善網路安全外,更能提高所有網路安全產品與服務當面對不同網路威脅時的防禦能力。是以,我國資安主管機關是否亦需協調所有資安部門,針對網路安全技術架構研擬或規劃出相關標準化的網路威脅防範模組,則是亟需思考的問題。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).