美國食品藥物管理局(The Food and Drug Administration,簡稱FDA)於今年(2014)7月更新並公布了醫療器材上市前審查(premarket notification)的指令(guidance)(該指令名稱為510(k) Program: Evaluating Substantial Equivalence in Premarket Notification,以下簡稱510(k)),針對醫療器材業者將其生產製造的醫療儀器申請上市的過程做了新的調整及規範。此指令主要是讓業界及FDA人員了解FDA在評估醫療器材申請過程中所評估的因素及要點,並藉由FDA在審查醫療器材的實務規範及審查標準來當作標準並訂定510(k)修正,以提高510(k)評估的可預測性、一致性及透明度,讓業界有一定的遵循標準。雖然FDA的指令文件並不受法律強制規範,但可供醫材藥廠清楚FDA所重視的審查程序及內容。
510(k)審查的內容主要規範於美國藥物食品化妝品管理法第513(i)條,其重點規範包括定義FDA評估實質上相同的標準:實質上相同指新醫材在技術上特點(technological characteristics)與比對性醫材相同;若該新醫材的技術特點在材料設計等和比對性醫材不盡相同,其需證明該儀器的資訊包括臨床試驗或是實驗數據等,與比對性醫材的安全及有效性性質並無歧異。以下為FDA在進行510(k)審查過程中,主要的評估內容:
1.說明欲申請上市新醫材在技術上的特點。
2.比較新醫材及比對性醫材在器材技術上特點的異同。欲申請510(k)的製造商需比較新醫材及已上市的醫材在功能上的異同。
3.決定技術特點的差異是否會影響新醫材的安全及有效性。
本文為「經濟部產業技術司科技專案成果」
歐盟執委會於2020年1月8日發布《非歐盟國家智財權保護與執法成效報告》(Report on the protection and enforcement of intellectual property rights in third countries)。該報告自2006年起,每兩年出版一次,主要目的為確定特定非歐盟國家中智財權之保護與執法狀況,並列出每兩年的「優先關注國」(priority countries)清單。報告中亦說明,所謂「優先關注國」是對歐盟智財利益造成最大侵害的國家,而非指全球中智財保護狀況最有問題的國家。 本次報告臚列的國家中,中國為最需關注的第一級國家;第二級為印度、印尼、俄羅斯等;第三級則是阿根廷、巴西、馬來西亞、泰國、沙烏地阿拉伯等國。報告提到中國是歐盟境內仿冒品與盜版貨物的主要來源。在歐盟海關扣押的仿冒品與盜版貨物中,有百分之八十以上來自中國和香港。第二類優先國家,其智財保護與執法存在系統性問題,且問題解決上進度緩慢。而第三類優先國家智財領域表現上也有類似問題,僅在嚴重性和數量低於第二級優先國家。其中,沙烏地阿拉伯為今年新增為優先關注國家,研究報告指出該國常被作為中轉國家,傳輸歐盟境內仿冒與盜版貨物。 報告中亦提到上述國家共同問題,包含: 強制性技術轉讓策略(特別是中國)不利於外國產業(尤其是高科技產業)投資,使外國產業失去競爭優勢; 海關執法情形不一,往往沒有依職權採取人身拘提、扣押、銷燬仿冒及盜版貨物,或是未對運輸中的盜版貨品依法採取行動; 仿冒和盜版商品通常不會被執法部門直接銷燬,甚至會回到市場; 智財侵權罰則上,許多國家的懲罰過輕,無法造成威懾作用。 因缺乏執法政治意願和資源,使國家智財權執法情況薄弱,也導致技術基礎設施、人力資源、專業能力,甚或司法、行政以及一般公眾對智財權價值認識不足。
德國聯邦專利法院認定人工智慧不具專利發明人資格 但特別點出人工智慧在發明之貢獻德國聯邦專利法院在2021年11月中旬對美國發明人Stephen Thaler(後稱Dr. Thaler)所開發之AI系統(DABUS)是否能成為專利發明人作出判決,儘管AI在研發過程中協助發現問題並解決問題,法院仍認為專利發明人必須為自然人,但特別補充說明這項發明確實有得到AI的幫助。 Dr. Thaler及其法律團隊將該發明在各國進行專利申請。盤點各國智財局或法院之考量:美國專利商標局(USPTO)強調發明人應以自然人為由排除這類案件;儘管英國智財局(UKIPO)認同DABUS富有創新,卻否認其為合法發明人,不過認為有必要檢視AI技術帶給現存專利制度的挑戰,並已啟動針對AI發明之法律改革計畫;至於歐洲專利局(EPO)以不符合自然人或實體等資格而核駁這類案件,然而上訴結果將於12月下旬作出判決。 惟澳洲聯邦法院在7月底逆轉做出法律並未禁止以AI為發明人而提出專利申請之判決,這也是繼南非允許AI作為發明人而取得專利權之後的第二個案例。 根據各國智財局、世界智慧財產權組織(WIPO)與法院多將智慧財產係來自於心智創作,卻未定義該心智創作是來自於人類或AI,可預見非人類主體將可被視為發明人並授予智慧財產權。此外,現行智財法律也有重新檢視與定義之必要性,包括釐清AI演算法與AI開發者之角色以重新定義發明人資格或所有權人等議題。
美國聯邦法官裁決AI「訓練」行為可主張合理使用美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。