據調查,英飛凌(Infineon)、飛利浦(Philips)、三星電子(Samsung)及瑞薩電子(在當時為日立與三菱之合資公司) (Renesas,Hitachi 及Mitsubishi)在2003年9月至2005年9月間,藉由雙邊接觸以串謀有關智慧卡晶片相關事項;歐盟執委會認為該些公司在歐洲經濟區內(EEA)有對於智慧卡晶片之聯合行為,違反歐盟反托拉斯法(Cartels)。執委會因此對其處罰138,048,000歐元。瑞薩電子因符合2006年之寬恕告知(2006 Leniency Notice)而向執委會揭發智慧卡晶片之聯合行為,故免除罰鍰,三星因配合調查而減免30%之罰鍰。
該些進行聯合行為之公司係藉由雙方接觸來往決定個別回應顧客要求降價之方式。他們討論並交換機密之商業資訊,包含價錢、客戶、契約協商、產能或產能利用率及未來之市場行為。該行為違反了禁止聯合行為和限制商業活動之歐盟運作條約(TFEU)第101條及歐盟經濟區協定第53條。
負責競爭政策之執委會副主席Joaquín Almunia說: 在這個數位時代,不管是在手機、信用卡或護照裡,幾乎每個人都在使用智慧卡晶片。製造商應藉由創新及以最佳的價格提供最好產品之方式,致力於勝過競爭對手。若製造商不這麼作,反而選擇串謀,而造成消費者利益的損失,應受到制裁。
最初,執委會希冀藉由2008年調解通告(2008 Settlement Notice)而尋求與部分公司和解之可能性。然而,基於調解協商之進展緩慢,執委會遂於2012年決定停止調解而回歸至正常程序。
面對境外網路安全的風險,美國歐巴馬總統於2013年2月12日,正式簽署「改善關鍵基礎設施之網路安全」行政命令(Executive Order 13636–Improving Critical Infrastructure Cyber security),據該行政命令第二款,將「關鍵基礎設施」定義為,「對於美國至關重要,而當其無法運作或遭受損害時,將削弱國家安全、經濟穩定、公共健康或安全之有形或虛擬系統或資產」,遂採取相對廣義之解釋。該行政命令第七款,亦指示美國商務部「國家標準技術研究所」(National Institute of Standard and Technology, NIST),將研議ㄧ個提升關鍵基礎設施資通訊安全之架構(Framework to Improve Critical Infrastructure Cybersecurity),將美國聯邦憲法所保障的企業商業機密、個人隱私權和公民自由等法益納入考量。 針對關鍵基礎設施引發重要之法制議題,美國副司法部長Mr. James M. Cole表示,由於關鍵基礎設施影響所及者,乃人民在法律下的權益,公部門政府將在該項議題上與私部門共同合作(partnership),且未來將研議通過立法途徑(legislation),將隱私權和公民權保護(the incorporation of privacy and civil liberties safeguards)納入關鍵基礎設施資通訊安全法制之全盤考量,相關趨勢殊值注意。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
日本發布創新治理報告書,主張強化企業等對法規範形成的實質參與日本經濟產業省於2020年7月13日發布「創新治理:實現Society5.0的法規與結構設計(GOVERNANCE INNOVATION: Society5.0の実現に向けた法とアーキテクチャのリ・デザイン)」報告書。其作成背景係依據日本在去(2019)年G20峰會時,基於大阪框架(大阪トラック、Osaka Track)下的「可資信任的資料自由流通機制(Data Free Flow with Trust(DFFT))願景,所提出的創新治理目標。該目標指出,過往的治理模式主要依靠法律規範,但明顯已追趕不及數位化與創新的快速步伐,致生新型態風險無法獲得有效控管、法律可能阻礙創新等問題,因而有必要革新治理模式,以掃除創新活動的障礙。基此,就上述創新治理模式的必要性與方式,日本召集國內外法律、經濟、科技、經濟等各界專家徵求意見進行討論,彙整後作成本報告書。 本報告書主張,應擺脫法規範的設計、法遵與執行,均由國家主導的傳統模式,建立提高企業參與規範擬定與實施程度的治理型態。具體主要包含以下作法: (1)法規範制定層面:規範之制定方向,改以作成價值決定的目的導向為主。至於細節性的行為義務,包含企業如何在數位化的虛擬場域內,透過程式語言等途徑落實上述法目的,則應由該些企業、以及在虛擬場域活動的社群或個人等利害關係人共同參與擬定相關的指引或標準。 (2)法遵層面:如上(1)所述,未來法規範制定將轉為形塑價值與目的為主,不會明確訂定企業的行為義務,而交由企業來擬訂。企業所制定之行為規範能否達成法規範目的,則須仰賴企業主動揭露其法遵方法,供外界檢視。因此,除企業應採用創新手法達成法目的、並對內落實法遵事項的說明外,應運用各種內外部查核機制來控管風險。同時,應著手研發相關技術或措施,讓利害關係人得取用企業之即時資料,以隨時確認企業所採取方法有無達成法遵,實現有效監督。 (3)執法層面:政府應以企業之行為對社會產生影響的程度,作為執法標準。若遭遇AI參與決策而衍生的事故,不應歸責於個人,而應建立獎勵機制,鼓勵企業積極協助究明事故原因。另一方面,亦應推動訴訟與訴訟外紛爭解決機制的線上化(Online Dispute Resolution, ODR),例如共享經濟平台服務的認證機制與標準、就電商平台上發生的小額消費糾紛由平台透過公告罰則等方式抑止與處理糾紛。
智慧聯網之發展與個人資訊隱私保護課題:以歐盟之因應為例