纏訟四年後,臺灣積體電路製造股份有限公司及其北美子公司(臺積電),在與美國Ziptronix公司之專利訴訟中獲得勝訴判決。
同為半導體公司的Ziptronix於2010年起訴主張臺積電所製造,主要用於智慧型手機相機的背照式CMOS影像感測器晶片,侵害該公司9項專利及超過500項申請專利範圍。
依據美國專利法第271條(a)項,除該法另有規定外,於專利權存續期間,未經許可於美國境內製造、使用、要約銷售,或銷售已獲准專利之發明產品,或將該專利產品由外國輸入至美國境內,方屬侵害專利權。因此本案中,臺積電即以美國專利法不適用於美國境外之製造、銷售為由,向法院聲請駁回原告Ziptronix公司之訴。承審法官同意臺積電簡易判決(summary judgment)的聲請,並於10月底作出判決。
臺積電於訴訟中成功主張涉訟晶片的製造及銷售交貨行為皆在臺灣完成。承審法官更指出,縱使如原告Ziptronix公司所言,臺積電相關契約皆於美國境內協商及簽訂,但因為該等契約本來就計畫於海外履行,因此臺積電的涉訟晶片仍非於美國境內銷售。
管制全球溫室氣體排放量的京都議定書生效,發展再生能源成為趨勢。行政院農業委員會投入生質能源作物開發,規劃利用北、中、南三地共九十公頃的休耕農田,種植向日葵、大豆及油菜等三種油料能源作物,研發生質柴油,期盼提高農業「綠色產值」。 農委會指出,農業部門在再生能源領域中也有發揮空間,國內外生質能源相關研究認為可利用植物將太陽能、水力及二氧化碳轉化為生質能源,台灣每年有不少農地休耕,可利用推展能源作物,發展生質能源,同時提升休耕農田的附加價值,開創台灣農業發展新契機。 農委會官員指出,研究發現這些作物製成的生質柴油使用於汽車與一般柴油相同,而且排放的廢氣、二氧化碳較少,不過,生質油成本較柴油高,相關技術尚待進一步研究。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
歐盟公布人工智慧白皮書歐盟執委會於2020年2月19日發表《人工智慧白皮書》(White Paper On Artificial Intelligence-A European approach to excellence and trust)指出未來將以「監管」與「投資」兩者並重,促進人工智慧之應用並同時解決該項技術帶來之風險。 在投資方面,白皮書提及歐洲需要大幅提高人工智慧研究和創新領域之投資,目標是未來10年中,每年在歐盟吸引超過200億歐元關於人工智慧技術研發和應用資金;並透過頂尖大學和高等教育機構吸引最優秀的教授和科學家,並在人工智慧領域提供世界領先的教育課程。 而在監管方面,白皮書提到將以2019年4月發布之《可信賴之人工智慧倫理準則》所提出之七項關鍵要求為基礎,未來將制定明確之歐洲監管框架。在監管框架下,應包括下列幾個重點:1.有效實施與執行現有歐盟和國家法規,例如現行法規有關責任歸屬之規範可能需要進一步釐清;2.釐清現行歐盟法規之限制,例如現行歐盟產品安全法規原則上不適用於「服務」或是是否涵蓋獨立運作之軟體(stand-alone software)有待釐清;3.應可更改人工智慧系統之功能,人工智慧技術需要頻繁更新軟體,針對此類風險,應制定可針對此類產品在生命週期內修改功能之規範;4.有效分配不同利害關係者間之責任,目前產品責任偏向生產者負責,而未來可能須由非生產者共同分配責任;5.掌握人工智慧帶來的新興風險,並因應風險所帶來之變化。同時,白皮書也提出高風險人工智慧應用程式的判斷標準與監管重點,認為未來應根據風險來進行不同程度之監管。執委會並透過網站向公眾徵求針對《人工智慧白皮書》所提出建議之諮詢意見,截止日期為2020年5月19日。
歐盟啟動2030年提升建築能源效率合作創新研究為有效達成「歐洲2020策略」以及「歐洲2050減碳」等政策目標,由歐盟所補助設立的歐洲建築科技平台(European Construction Technology Platform, ECTP) 其下能源效率建築協會(Energy Efficient Buildings Association, E2BA),於今年度 (2012) 7月份正式對外發布首份創新研究報告「前瞻建築能源效率之研究–創新及公私部門合作」(Energy-efficient Buildings PPP beyond 2013)。該研究報告開宗明義指出,將規劃於2030年透過創新模式,及公私部門合作之落實,建立一個創新高科技能源效率產業,達到建築物碳中和(Carbon Neutral)、提昇產業技術、創造新工作機會以及落實智慧城市計畫等目標。 本研究報告係從「市場」(Market)的角度出發,嘗試提出具可行性之商業模型(Business model),供決策者參考。有鑒於建築產業在能源消耗及碳排放量占有很大的比例,該報告即指出對於既有建築物翻新與整修之急迫性,也認為應該透過政府部門介入,推動相關措施,並導引民間持續落實。其次,於產業評估效益方面,該報告明確指出,透過提昇建築能源效率,將創造許多新的就業機會,帶動地方經濟發展。綜上,歸納二點供參考,第一,為達成長期能源效率提升之目標,公部門將寄出管制手段並設置公共基金(Public funding),以防止產業市場失靈,有其必要性;第二,產業等實務運用契約型態將歷經質變,長期性的節能績效保證契約(Long-term energy performance guaranteed contract)將被越來越常被引用。 適逢歐洲議會通過能源效率指令(Energy Efficiency Directive),指令中第四條係針對公有建築物翻新之規範條款,對此歐盟會員國已陸續檢討各自國內推動現況,但目前各國仍面對許多問題及挑戰,例如既有建築物翻新整修,一直無法有效提昇件數,以及投入資金過於龐大等等因素,除非政府展現積極介入的決心,支持及並投入資金協助推動,否則成效仍可能維持停滯不前的困,相關趨勢發展值得後續觀察。