日特許廳開始提供WIPO資料庫商標公報資訊

  日本特許廳公開表示,從本年度11月27日起,將開始提供日本商標公報訊給世界智慧財產權機構(WIPO)所建置的世界最大規模之商標資料庫「Global Brand Database」,今後民眾將可以在前述資料庫中搜尋到登載有日本商標註冊資訊的商標公報。如此一來,日本廠商將可以在一個資料庫中完整搜尋到包含日本商標在內的商標資訊,對於日本廠商擬定全球品牌策略將可以提供許多便利。

  「Global Brand Database」是WIPO所免費提供的資訊供應服務,在這個資料庫上,一般民眾可以公開使用,進行商標申請案或已註冊商標的檢索,及查照詳細資訊。在2011年3月WIPO啟動這項服務時,當時還只有累積國際註冊商標、依里斯本條約登記的原產地名稱及依巴黎公約登記的國家徽章等,從2013年2月開始,也陸續放入世界各國商標申請案或已註冊商標的資訊。如今,在「Global Brand Database」上已經可以查到16個國家商標主管單位的商標資訊。在2014年11月20日的時間點上,該資料庫約存放有1400萬筆的資訊,而從2014年5月起也開提供了上傳圖片檔案檢索類似圖形商標的圖像檢索功能。

  目前參加「Global Brand Database」資料庫資訊提供服務的國家包括美國、澳州、加拿大、新加坡、紐西蘭、瑞士、菲律賓、丹麥、以色列、蒙古、埃及、柬埔寨、愛沙尼亞、阿聯酋、阿曼、阿爾及利亞等16個國家,中國、韓國並未參加。

相關連結
※ 日特許廳開始提供WIPO資料庫商標公報資訊, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6694&no=57&tp=1 (最後瀏覽日:2026/01/14)
引註此篇文章
你可能還會想看
何謂「Society 5.0」

  日本科技政策的制定依據來自日本「科學技術基本法」,該法第九條規定,要求國家在推動科技振興發展上,政府應制訂有關科學技術振興的「科學技術基本計畫」。「科學技術基本計畫」之推動以五年為一期,最近一期為第五期(2016-2020年),該期計畫以人工智慧與資通訊技術為核心,解決各式重要社會課題,打造「超智慧社會」,並命名為「Society 5.0」。   「Society 5.0」明訂日本實現超智慧社會的政策方向,其政策重點聚焦於產業創造與社會變革,並重新架構產業與整個社會的關係,因此,除了強化產業競爭力,實現產業變革以外,「Society 5.0」也規劃解決日本近年社會課題,包括老齡化社會、勞動力不足、能源短缺與自然災害等。而在前瞻性預測上,「Society 5.0」描繪20年後未來人類將生活在為高度電腦化、智慧化環境,為實現該目標,發展物聯網、大數據分析、電腦科學與技術、人工智慧與網路安全等相關科技基礎技術研發與應用,是「Society 5.0」的核心之一。   簡單來說,「Society 5.0」追求以人為中心的新經濟社會,運用高度融合網路虛擬空間及物理現實空間的相關技術,滿足未來人類生活上的各種需求,同步解決經濟發展與社會課題,並以此建構更貼近符合個人需求之社會。

FCC通過命令以促進飛機上網路服務

  為促進電信市場競爭與服務之普及,在2012年12月28日美國公佈FCC12-161命令,而透過該項命令,預計未來不論機組人員、亦或是旅客於商業客機、自用客機內,使用網路服務的比例將會提升。FCC認為此舉不僅可滿足消費者對無所不在(Ubiquitous)網路的需求外,亦可促後使經濟成長與創造就業機會。   其實,早於2001年,美國政府就透過同步軌道的方式(Geostationary-Orbit)開放網路服務,但在設置上必須設置多個地球站(earth station),而FCC所命名的Earth Stations Aboard Aircraft(ESAA),則延續過去設置於車輛、船舶之技術,在飛機外部安裝接收器,以和衛星固定業務(fixed satellite service)作為骨幹,使乘客手機透過例如Wifi技術取得網路服務;至於,在頻段的使用上,相較過去以非有害干擾為前提,ESAA則有明確之規定:下傳(downlink)頻率之選擇是依循車輛、船舶執行相同服務的規定、並考量將經過不同國域與領海,故選擇該10.95-11.2 GHz、11.45-11.7 GHz與11.7-12.2 GHz,以符合美國、國際頻譜配置;上傳(uplink)的頻率則是基於不受雙向干擾之情況下,選擇14.0-14.5 GHz頻段。   現階段,FCC為積極促進該業務發展,不僅允許航空公司與寬頻業者皆可提供服務外,亦建立一套管制架構,以保護飛航網路不受干擾、確保地面無線電服務能正常運作,並且,為減少行政資源與促進服務普及,FCC簡化業者申請流程,最多僅需原來時間的一半。雖然, FCC針對技術、執照的發放有詳細的規範,但尚未對旅客使用VOIP服務(Eg:Line、Skype)做任何規範,而這是FCC未來推廣該服務之隱憂。儘管如此,該服務推展確實可便利遊走各國間之旅客,但對於想在飛機上享受片刻寧靜的人而言,能普及使用Wifi可真是喜憂參半的消息。

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。  問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

TOP