國家技術標準之制定政策-由英國BSI觀國家技術標準制定政策

國家技術標準之制定政策
-由英國BSI觀國家技術標準制定政策

科技法律研究所
法律研究員 徐維佑
2014年12月03日

壹、前言

  所謂技術標準(standards),指透過法規、私人企業、或者產業慣例形成的統一技術或特定規格,包括重量、大小、品質、材料或技術特徵(technical specifications),以使商品、服務、製造或製造程序方法能有共通的設計或相容性[1];由特定標準制定組織要求市場上商品或服務應符合一定品質者,亦為技術標準,例如確保農產品符合人體食用的健康安全標準。

  制定技術標準不但具有降低生產成本、促進創新、加強消費者選擇性、增進公共健康及安全等優點,更是國際貿易的基礎。以技術日新月異的ICT資訊通信產業而言,標準更是搶佔市場的利器。

貳、英國國家標準制定政策

  成立於西元1901年之英國標準協會(British Standards Institution,以下簡稱BSI)為英國標準制定組織,亦是全球第一個國家標準機構,專門提供企業解決方案,將最佳實務模式(best practice)轉換成日常表現標準。BSI非政府機構,但透過與英國政府商業、創新與技術部門(Department for Business, Innovation and Skills, BIS)簽訂備忘錄,BSI成為英國國家標準制定組織,而其特色與任務大致如下:

一、以整體產業為考量之標準制定機構
  BSI標準制定業務範圍[2],除國家、區域、國際標準外,亦為私人企業、企業聯盟制定企業內部或企業聯盟間私人標準。標準制定之作法,係由產業界提名各領域之專業人員,及少數之政府部會官員成立標準制定委員會,各委員並非代表公司立場,而係以整體產業最有利立場參與會議;而BIS政府官員功能僅為傳達目前政府部會投入發展方向;標準制定委員會下,則設有技術委員會,委員各為特定技術領域之專家。BSI的原則為取得各界意見的平衡,在技術委員會成員組成上會避免單一勢力獨大,並盡力避免標準中包含特定權利人之智慧財產。

二、協助技術發展之階段式標準制定工作
  BSI對於英國國內之技術研究、發展活動,採階段式引導標準化制定工作:
1、基礎研究階段:即早整合各利害關係人共識,建立共同發展對話基礎;
2、驗證技術可行性階段:藉由建立專家小組,發展初期測試方法與安全管理之共同觀點;
3、技術整合階段:即早為市場作準備,統一規格與測試方法,以及日後之技術升級方法;
4、原型製作階段:建立產業間行為準則,同時廣納消費者觀點,提昇該技術於市場之接受度;
5、應用測試、系統驗證階段:連結該技術與市場上產品、或其他服務、亦或其他標準組織制定之標準。

  值得強調的是,BSI於研究發展活動各階段制定之標準提案草案皆會公佈於網站上,提供平台予大眾針對草案表示意見。

三、快速形成產業標準之PAS共通規範
  BSI設有「可公開獲得的規範(publicly available specification, PAS)[3]」,相較於一般國家標準、國際標準,開發PAS時程較短,其目的為在英國國家標準或國際標準形成前,作為提早提供市場參考、使用之共通規範,國際標準如ISO亦有此制度。當技術共通規範成為PAS後,每3年接受技術委員會確認是否延續,或轉將其提案為國際標準。

  私人企業可向BSI付費委託發展PAS共通規範。BSI會派專業人員指導企業如何撰寫PAS共通規範提案相關文件,集合內部專家團隊協助完成PAS共通規範提案。完成後對外召集內外部專家檢視PAS提案,包括標準制定委員會成員、政府官員、相關產業人員與消費者團體,並將檢視結果建議回饋給BSI內部專家團隊決定最終版本,公佈予給各界參考使用,公佈後之成果亦作為日後發展國家標準、國際標準之基礎。

參、結論

  英國國家標準制定組織BSI,不遺餘力的協助產業自願性形成共識作為國家標準主軸,由產業推舉之專業人員與政府各領域官員作為技術委員會成員,平衡各界意見以整體產業發展為考量。藉由研究發展各階段性標準化工作,公開標準草案廣納各界意見,並盡力避免標準包含特定人之智慧財產權。並且,BSI協助國內企業發展PAS共通規範,除加速國內產業共識的形成外,更建立發展國際標準之良好基礎,摃動英國產業發展,並保障社會、環境、消費者之權益,值得我國學習。

[1]Mark A. Lemley, Intellectual Property Rights and Standard-Setting Organizations, 90 Calif. L. Rev. 1889, 1910-1911 (2002), available at http://scholarship.law.berkeley.edu/cgi/viewcontent.cgi?article=1392&context=californialawreview (last visited Aug. 28, 2014)

[2]筆者親自訪談Daniel Mansfield政策主任,BSI Group總部,英國倫敦(2014/10/15)。

[3]ISO, ISO/PAS Publicly Available Specification (2014), http://www.iso.org/iso/home/standards_development/deliverables-all.htm?type=pas (last visited: 2014/10/01)

 

※ 國家技術標準之制定政策-由英國BSI觀國家技術標準制定政策, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=6699&no=57&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
日本人工智慧(AI)發展與著作權法制互動課題之探討

  日本著作權法第2條第1項第1款規定對著作物定義中,創作性之表現必須為具有個人個性之表現,日本對於無人類行為參與之人工智慧創作物,多數意見認定此種產品無個性之表現,非現行著作權法所保護之產物。人工智慧之侵權行為在現行法的解釋上,難以將人工智慧解釋其本身具有「法人格」,有關人工智慧「締結契約」之效力為「人工智慧利用人」與「契約相對人」間發生契約之法律效果。日本政府及學者對人工智慧之探討,一般會以人工智慧學習用資料、建立資料庫人工智慧程式、人工智慧訓練/學習完成模型、人工智慧產品四個區塊加以探討。日本政策上放寬著作權之限制,使得著作物利用者可以更加靈活運用。為促進著作之流通,在未知著作權人之情況下,可利用仲裁系統。在現今資訊技術快速成長的時代,面對人工智慧的浪潮,日本亦陸續推出相關人工智慧研發等方針及規範,對於爾後之發展值得參酌借鏡。

德國推行氣候保護協議和綠色領導市場措施,加速基礎工業氣候中和技術發展

德國經濟及氣候保護部科學顧問委員會於2023年2月8日公布《向氣候中和產業轉型:綠色領導市場和氣候保護協議》(Transformation zu einer klimaneutralen Industrie: Grüne Leitmärkte und Klimaschutzverträge)報告,擬透過綠色領導市場(Grüne Leitmärkte)和氣候保護協議(Klimaschutzverträge)兩種工具措施,在基礎⼯業中⼤規模推廣氣候中和⽣產技術。 科學顧問委員會指出,目前僅靠碳定價已無法調整在氣候保護面向的市場失靈問題,加上基礎工業(例如鋼鐵、水泥、合成氨等)的氣候友好型技術投資上缺乏經濟效益,因此政府需要採取額外措施來實現基礎工業的氣候中和。 綠⾊領導市場則是國家建立或支持以氣候中和⽅式⽣產的原物料(例如綠⾊鋼鐵)的市場,政府採購中可優先使⽤綠⾊原料,也可以透過監管措施,規定私⼈和企業在⼀定範圍內只能使⽤含有⼀定⽐例綠⾊原料的產品。氣候保護協議則是國家與企業間,就⽣產氣候友好型產品簽訂契約,保證企業將獲得15年的補償⾦,以補償採行氣候中和⽣產術所產生較⾼的成本,同時亦保護企業免受碳定價波動和其他⾵險的影響。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

從交易成本概念談智慧財產資訊揭露的原則與效益

TOP