國家技術標準之制定政策
-由英國BSI觀國家技術標準制定政策
科技法律研究所
法律研究員 徐維佑
2014年12月03日
壹、前言
所謂技術標準(standards),指透過法規、私人企業、或者產業慣例形成的統一技術或特定規格,包括重量、大小、品質、材料或技術特徵(technical specifications),以使商品、服務、製造或製造程序方法能有共通的設計或相容性[1];由特定標準制定組織要求市場上商品或服務應符合一定品質者,亦為技術標準,例如確保農產品符合人體食用的健康安全標準。
制定技術標準不但具有降低生產成本、促進創新、加強消費者選擇性、增進公共健康及安全等優點,更是國際貿易的基礎。以技術日新月異的ICT資訊通信產業而言,標準更是搶佔市場的利器。
貳、英國國家標準制定政策
成立於西元1901年之英國標準協會(British Standards Institution,以下簡稱BSI)為英國標準制定組織,亦是全球第一個國家標準機構,專門提供企業解決方案,將最佳實務模式(best practice)轉換成日常表現標準。BSI非政府機構,但透過與英國政府商業、創新與技術部門(Department for Business, Innovation and Skills, BIS)簽訂備忘錄,BSI成為英國國家標準制定組織,而其特色與任務大致如下:
一、以整體產業為考量之標準制定機構
BSI標準制定業務範圍[2],除國家、區域、國際標準外,亦為私人企業、企業聯盟制定企業內部或企業聯盟間私人標準。標準制定之作法,係由產業界提名各領域之專業人員,及少數之政府部會官員成立標準制定委員會,各委員並非代表公司立場,而係以整體產業最有利立場參與會議;而BIS政府官員功能僅為傳達目前政府部會投入發展方向;標準制定委員會下,則設有技術委員會,委員各為特定技術領域之專家。BSI的原則為取得各界意見的平衡,在技術委員會成員組成上會避免單一勢力獨大,並盡力避免標準中包含特定權利人之智慧財產。
二、協助技術發展之階段式標準制定工作
BSI對於英國國內之技術研究、發展活動,採階段式引導標準化制定工作:
1、基礎研究階段:即早整合各利害關係人共識,建立共同發展對話基礎;
2、驗證技術可行性階段:藉由建立專家小組,發展初期測試方法與安全管理之共同觀點;
3、技術整合階段:即早為市場作準備,統一規格與測試方法,以及日後之技術升級方法;
4、原型製作階段:建立產業間行為準則,同時廣納消費者觀點,提昇該技術於市場之接受度;
5、應用測試、系統驗證階段:連結該技術與市場上產品、或其他服務、亦或其他標準組織制定之標準。
值得強調的是,BSI於研究發展活動各階段制定之標準提案草案皆會公佈於網站上,提供平台予大眾針對草案表示意見。
三、快速形成產業標準之PAS共通規範
BSI設有「可公開獲得的規範(publicly available specification, PAS)[3]」,相較於一般國家標準、國際標準,開發PAS時程較短,其目的為在英國國家標準或國際標準形成前,作為提早提供市場參考、使用之共通規範,國際標準如ISO亦有此制度。當技術共通規範成為PAS後,每3年接受技術委員會確認是否延續,或轉將其提案為國際標準。
私人企業可向BSI付費委託發展PAS共通規範。BSI會派專業人員指導企業如何撰寫PAS共通規範提案相關文件,集合內部專家團隊協助完成PAS共通規範提案。完成後對外召集內外部專家檢視PAS提案,包括標準制定委員會成員、政府官員、相關產業人員與消費者團體,並將檢視結果建議回饋給BSI內部專家團隊決定最終版本,公佈予給各界參考使用,公佈後之成果亦作為日後發展國家標準、國際標準之基礎。
參、結論
英國國家標準制定組織BSI,不遺餘力的協助產業自願性形成共識作為國家標準主軸,由產業推舉之專業人員與政府各領域官員作為技術委員會成員,平衡各界意見以整體產業發展為考量。藉由研究發展各階段性標準化工作,公開標準草案廣納各界意見,並盡力避免標準包含特定人之智慧財產權。並且,BSI協助國內企業發展PAS共通規範,除加速國內產業共識的形成外,更建立發展國際標準之良好基礎,摃動英國產業發展,並保障社會、環境、消費者之權益,值得我國學習。
[1]Mark A. Lemley, Intellectual Property Rights and Standard-Setting Organizations, 90 Calif. L. Rev. 1889, 1910-1911 (2002), available at http://scholarship.law.berkeley.edu/cgi/viewcontent.cgi?article=1392&context=californialawreview (last visited Aug. 28, 2014)
[2]筆者親自訪談Daniel Mansfield政策主任,BSI Group總部,英國倫敦(2014/10/15)。
[3]ISO, ISO/PAS Publicly Available Specification (2014), http://www.iso.org/iso/home/standards_development/deliverables-all.htm?type=pas (last visited: 2014/10/01)
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟資料治理規則提出資料利他主義制度以利於公益目的之利用歐盟於2022年5月30日正式簽署通過「資料治理規則」,同時引入(EU)2018/1724修正案(REGULATION (EU) 2022/868 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on European data governance and amending Regulation (EU) 2018/1724),針對資料中介組織及資料利他主義組織業務啟動、營運等註冊程序進行補充。 資料治理規則也通稱為資料治理法(Data Governance Act, DGA)。DGA以建立一個可信賴的資料流通環境,達成資料的可利用性,以促進資料可用於各項研究以及創新的商品和服務為目標。 DGA中,特別引人注意的是第四章「資料利他主義」(Data altruism)的提出。依據資料治理規則第二條,所謂的資料利他主義係指資料主體基於自願且無償的情況下,同意他人得處理或利用其所持有的個人資料;或資料持有者在不尋求補償的情況下允許他人得利用其所有的非個人資料(non-personal data)。而這些資料利用的目的是以實現公共利益為目標,例如醫療保健、解決氣候變化、改善交通、促進公部門統計資料的產製與應用、改善公共服務、制定公共政策,或是科學研究等。 為利於資料利他主義的落實,歐盟希望有明確的的制度設計,藉以促成更多資料主體或資料持有人,在有足夠信任的基礎下,願意將資料無償提供並進行公益目的之利用,進而實現改善生活的目標。 因此,DGA中提出以下作法: 制訂「歐洲資料利他主義同意書」(European data altruism consent form):該法授權歐盟執委會應在諮詢過歐盟資料保護委員會(European Data Protection Board)以及考慮過DGA新設之歐盟資料創新委員會(European Data Innovation Board)的意見後,制定統一的「歐洲資料利他主義同意書表格」。以此增加資料主體對於資料授權的信任,提高資料主體同意將資料釋出與流通再利用之意願,並為授權或撤銷同意建立法遵明確性。 資料利他主義組織(data altruism organisations)管理機制: (1) 資料利他主義組織採自願註冊制度,而非許可制。在資料利他主義於符合形式登記要件後,並符合非營利、透明性以及滿足保障民眾權利等要求後,於其所屬會員國中註冊以成為公認(recognised)的資料利他主義組織。採自願註冊而非許可制的目的,是希望先以管制密度較低的方式,鼓勵更多組織投入資料利他主義的推動。 (2) 給予已註冊之資料利他主義組織識別標誌:透過相關的認可機制並授予識別標誌,藉此提高資料利他主義組織的可辨識度與信賴度,讓民眾在選擇合作的組織時有所依循。 (3) 透明度要求:為了增加資料主體或資料持有者對該組織的信任度,歐盟也將對資料利他主義組織進行一定程度的監督管理,例如年報編列與管理、是否以清晰易懂方式通知資料主體或資料持有者其資料被利用的目的、需保留資料利用之所有紀錄等。此外,也需要遵守DGA授權歐盟執委會未來訂定的相關補充規範。 整體而言,歐盟將資料利他主義的公益精神經由法制化的方式納入歐洲資料治理規則,透過歐洲資料利他主義同意書以及資料利他主義的相關管理規範,降低溝通成本以及建立信任基礎,以增加資料釋出的可能性,進而提升資料被利用的程度,最終達成改善人類福祉的目標。
布拉格提案(The Prague Proposals)2019年5月3日,來自全球30多國的政府官員與來自歐盟、北大西洋公約組織的代表於捷克布拉格所舉辦的5G資安會議(Prague 5G Security Conference)中,強調各國建構與管理5G基礎建設時應考慮國家安全、經濟與商業發展等因素,特別是供應鏈的安全性,例如易受第三國影響之供應商所帶來的潛在風險,本會議結論經主辦國捷克政府彙整為布拉格提案(The Prague Proposals),作為提供世界各國建構5G基礎建設之資安建議。 在這份文件中首先肯認通訊網路在數位化與全球化時代的重要性,而5G網路將是打造未來數位世界的重要基礎,5G資安將與國家安全、經濟安全或其他國家利益,甚至與全球穩定等議題高度相關;因此應理解5G資安並非僅是技術議題,而包含技術性與非技術性之風險,國家應確保整體性資安並落實資安風險評估等,而其中最關鍵者,則為強調確保5G基礎建設的供應鏈安全。 因此在布拉格提案中強調各國建構通訊網路基礎建設,應採用國際資安標準評估其資安風險,特別是受第三國影響之供應商背後所潛藏之風險,並應重視5G技術變革例如邊緣運算所產生的新風險態樣;此外對於接受國家補貼之5G供應商,其補貼應符合公平競爭原則等。布拉格提案對於各國並無法律上拘束力,但甫提出即獲得美國的大力肯定與支持。
德國因應歐盟一般資料保護規則(GDPR)之通過,即將進行該國資料保護法(BDSG)修正德國聯邦資訊技術,電信和新媒體協會(bitkom)於2016年9月2日釋出將以歐盟新制定之一般資料保護規則(GDPR)內容為基礎,調整德國聯邦資料保護法(BDSG)之修法動向。 德國政府正在緊鑼密鼓地調整德國的資料保護立法,使之與歐盟GDPR趨於一致。已知未來將由“一般聯邦資料保護法”取代現行的聯邦法律。草案內容雖尚未定稿,但修正方向略有以下幾點: 首先,德國未來新法不僅參考GDPR、也試圖將該法與GDPR及歐盟2016年5月4日公告之歐盟資訊保護指令Directive(EU)2016/680相互連結。該指令係規範對主管機關就自然人為預防,調查,偵查等訴追刑事犯罪或執行刑事處罰目的,處理個人資料時的保護以及對資訊自由流通指令。 其次,新法將遵循GDPR的結構,並利用一些除外規定,如:在資料處理時企業應指派九人以上資料保護官(DPO)的義務。某些如通知當事人的義務規定,亦有可能在存有更高的利益前提下,限縮其履行範圍。此意味某些通知義務有可能得不適用,例如履行該義務需要過於龐大人力、資金支出、耗費過多等因素。 第三,聯邦法律將保留一些規定,如上傳給信用調查機構的條款、雇傭契約中雇用方面處理個人資料的條款,以及在公眾開放地區使用電子光學裝置監視的條款等。 最後,立法修正動向值得注意的重點尚有,(1)未來德國立法者將如何應對新的歐洲資料保護委員會(EDPB)中德國代表的地位(represe。由於EDPB將發布具有約束力的決定,針對爭議內容的決定意見,德國內部顯然應該統一意見。蓋因迄今為止的德國聯邦資料保護監察官(17個)經常提出不同的見解。此外,(2)還應該觀察聯邦資料保護監察官是否應該賦予權限,向法院提出對歐盟爭議決定或法律救濟,使案件進入德國法院,以爭執歐盟執委會所為之決定是否具備充足理由。前此,德國聯邦參議院(代表十六邦)2016年5月已要求聯邦政府引進新規定,使資訊監察保護官有請求法院救濟之權。這項源於安全港協議判決的討論,將來有可能提供德國資料保護監察官,挑戰隱私盾協議的可能性。但新法案是否會解決這一問題,這還有待觀察。 可預見在2017年9月下一屆德國聯邦議會選舉前,將通過法案。