韓國2013年智財施行計畫檢討評估作法介紹
科技法律研究所
法律研究員 陳聖薇
2014年12月23日
壹、事件摘要
依據韓國智慧財產基本法第10條,韓國針對國家智慧財產施行計畫之執行成果,應定期進行整體檢討評估,以作為往後計畫之參考指標。為此,韓國於2014年8月11日公布「2013年度國家智財施行計畫之檢討評估結果」[1](以下簡稱2013檢討評估結果)。本文以下將簡要說明之。
如同「2012年度國家智財施行計畫之檢討評估結果」(以下簡稱:2012檢討評估結果),2013檢討評估結果針對2013年度國家智財施行計畫(以下簡稱2013年施行計畫)之5大政策面向:創造、保護、運用、基礎環境、新智慧財產,以及地方自治團體等六個面向挑選出重點推動之35課題,由民間專家組成「政策評估團」,以確保評估之專業性及客觀性。而具體評估方式與指標以下分別說明之。
貳、評估方式與指標
一、評估方式
韓國考量到智財施行計畫之特殊性,再者,評估國家層級智財政策之成效,不僅需要評估政策成果,同時也要對政策形成、執行等政策基礎環境之確保等相關要素進行評估,以作為下一年度計畫政策之參考。
為確保評估之專業性及客觀性,由韓國智財委員會之民間委員、及下設之創造、保護、運用、基礎環境、新智慧財產等專門委員會之專門委員,以及地方自治團體代表等30位成員組成政策評估團。每位評估委員就各機關提出之實績報告書內容為判斷依據,再依照不同指標之特性,進行定量和定性評估。政策評估團第1次評估完畢後,就會召開調整會議,決定各推動課題之評估等級(分成優秀、普通、需要改善3個等級)為何。最後,本智財施行計畫之最終評估結果會告知相關機關,供其制定、執行政策之參考,並且運用於智慧財產財政分配方向及下年度施行計畫之制定上。
二、評估指標
在評估指標設計上,韓國一大特色在於其不以行政機關別為政策評估,而是以創造、保護、運用、基礎環境、新智慧財產等五大政策領域以及加上地方自治團體面向作為評估框架[2]。進一步之細部評估指標則運用國務總理室之政府業務評估(特定評估[3])基本架構,針對「政策形成–執行–成果」整個過程,分階段進行評估。此外,2013檢討評估結果是以2012檢討評估結果為基礎,將既有之指標統合、刪減後,再依據地方政策特殊性,增加地方自治團體之評估指標。指標變更事項有:依據各地方特殊性需要有針對地方量身訂作之「地方自治團體政策差別性」指標;針對識別性較弱之「推動日程之適當性」與「監督與情況變化之對應性」之指標整合。配分變更事項有:因應政策是否實際有感於民的比重日亦加重,「政策效果」之指標也加重配分;就新的指標針對中央與地方分別進行評估。詳細指標內容如下表所示 :
表1:2013年智財施行計畫之中央(地方)機關政策評估指標
|
區分 |
評估項目 |
評估基準 |
|
政策形成(30%/35%) |
1.計畫確立之適切性(15%) |
1-1.事前分析、意見蒐集之充實性(5%) |
|
1-2.成果指標及目標值之適當性(10%) |
||
|
2.政策基礎環境之確保水準(15%/20%) |
2-1.推動體系之充實性(5%/10%) |
|
|
2-2.資源分配之適當性(10%) |
||
|
政策執行(30%) |
3.推動過程之效率性(20%) |
3-1. 與有關機關、政策之連結性(10%) |
|
3-2.監督與情況變化之對應性(10%) |
||
|
4.政策擴散之努力水準(10%) |
4-1.政策溝通、宣傳、教育之充實性(10%) |
|
|
政策成果(40%/35%) |
5.政策成果及效果(40%/35%) |
5-1.成果目標達成度(20%/15%) |
|
5-2.政策效果(20%) |
資料來源:韓國國家智財委員會,http://www.ipkorea.go.kr/index.do。
參、代結論
在前述評估機制運作下,2013檢討評估結果共列出8個優秀課題與4個待改善之課題。後續針對待改進課題,該主管機關在接受評估委員之改善意見後,會提出補充之改善計畫,表示其要如何解決政策推動之障礙因素,而國家智財委員會則會隨時檢視其執行狀況,並且適時給予政策支援。至於優秀課題部分,韓國將會提供細節資訊與相關機關共享,讓機關之間互相學習,樹立一個學習標準(benchmarking)。
從施行計畫、檢討評估到提供量身訂做之改善建議,顯示韓國對於建構智慧財產強國的企圖。而2012、2013檢討評估結果之經驗,也將持續提供為2014年檢討評估之參考,使智慧財產施行計畫之檢討評估能更具效率。
美國之「國家製造創新網絡智慧財產指南」(Guidance on Intellectual Property: National Network for Manufacturing Innovation) 係由先進製造國家計畫辦公室(Advanced Manufacturing National Program Office, AMNPO)於2015年3月公布。本指南係就智財策略之擬定,向製造創新之機構提供相關原則與彈性的框架,並同時釐清關鍵之智慧財產權利。此所稱之製造創新機構,係指2014年復甦美國製造與創新法(Revitalize American Manufacturing and Innovation (RAMI) Act of 2014)第34條(c)項所界定之機構,亦即為因應先進製造相關挑戰並協助製造業保持與擴展工業產品與就業機會之公私合營機構。 「國家製造創新網絡智慧財產指南」大別為9類共14項原則:(1)機構層級之智慧財產管理;(2)專案層級之智慧財產管理;(3)智慧財產所有權;(4)機構研發之智慧財產(Institute-Developed Intellectual Property, IDIP)權利;(5)非機構研發之智慧財產權利;(6)基礎智慧財產;(7)資料權利與管理;(8)出版權;(9)政府權利。以資料權利與管理為例,該類之下的第一項原則要求機構應研擬符合出口管制法規之資料計畫,並在計畫中界定與區分機構內部資料之類型,以及為維持機密性與網路安全所需之資料近用與管控。 我國於2015年9月公布「行政院生產力4.0發展方案」,發展方案於「掌握關鍵技術自主能力」之主策略下,由經濟部技術處主政推動成立「台灣生產力4.0研發夥伴聯盟(Taiwan Productivity 4.0 Partnership)」,透過政府民間之合作提升關鍵技術自主能力的同時,智慧財產權利相關配套措施自屬重要。
歐盟發布「歐盟植物品種權制度對歐盟經濟和環境影響」執行摘要,顯示歐盟植物品種權制度的影響歐盟植物品種事務局(Community Plant Variety Office, CPVO)與歐盟智慧財產局(European Union Intellectual Property Office, EUIPO)於2022年4月28日聯合發佈「植物品種權制度對歐盟經濟和環境影響」執行摘要(Impact of the Community Plant Variety Rights System on the EU Economy and the Environment–Executive Summary),以量化方式顯現「歐盟植物品種權」(Community Plant Variety Rights, CPVR)制度的影響: (1)若無CPVR制度,則在2020年時,歐盟耕地作物的收成量會比實際情形減少6.4%、水果減少2.6%、蔬菜減少4.7%、觀賞植物減少15.1%;換言之,因有CPVR制度帶來的額外收成,足以將耕地作物多供給予5,700萬人、水果多供給予3,800萬人,蔬菜多供給予2,800萬人。 (2)以總體經濟學(macro-economic)的角度觀之,若無CPVR制度帶來的額外收成量,歐盟在世界貿易的地位會惡化,而境內的消費者也將面臨更高的農作物價格。受CPVR制度保護的農作物對歐盟GDP之「額外」增長貢獻約為130億歐元,其中耕地作物約佔有71億歐元、水果11億歐元、蔬菜22億歐元、觀賞植物25億歐元。 (3)而因CPVR制度帶來的農作物額外收成,使歐盟農業的僱用情形提升;以耕地作物來說,增加近25,000個工作機會、園藝作物19,500個、觀賞植物45,000個,總計增加近90,000個工作機會。此僅單就上游的農業及園藝產業而言,其與下游產業(例如:食品處理業)合計增加近80萬個就業機會。 (4)不僅工作機會增加,從業者報酬也有所提高;相較於未有CPVR制度前,耕地作物從業者可獲得12.6%更高的報酬、園藝作物從業者可獲得11%更高的報酬。 (5)受有 CPVR保護之公司總計僱用了70,000名以上之員工,而其營業總額超過350億歐元;此等公司多為中小企業(SMEs),其佔有CPVR申請量90%以上,而其目前持有约歐盟整體60%的CPVR。 (6)在有CPVR制度後,歐盟農業及園藝業所排放的溫室氣體(greenhouse gas, GHG)每年減少6,200公噸;此二產業所需用水量減少了超過140億立方公尺。 綜上,由於減少對環境之衝擊、於農業與園藝上減少資源之使用、使從業者收入增加,及使消費者用更低廉價格購得農產品,故CPVR制度對於聯合國永續發展目標(Sustainable Development Goals)有所貢獻。除此之外,本執行摘要亦提及CPVR制度有潛力符合歐盟執委會(European Commission, EC)「歐洲綠色政綱」(The European Green Deal)目標。
OECD發布「促進人工智慧風險管理互通性的通用指引」研究報告經濟合作發展組織(Organisation for Economic Co-operation and Development,下稱OECD)於2023年11月公布「促進AI風險管理互通性的通用指引」(Common Guideposts To Promote Interoperability In AI Risk Management)研究報告(下稱「報告」),為2023年2月「高階AI風險管理互通框架」(High-Level AI Risk Management Interoperability Framework,下稱「互通框架」)之延伸研究。 報告中主要說明「互通框架」的四個主要步驟,並與國際主要AI風險管理框架和標準的風險管理流程進行比較分析。首先,「互通框架」的四個步驟分別為: 1. 「定義」AI風險管理範圍、環境脈絡與標準; 2. 「評估」風險的可能性與危害程度; 3. 「處理」風險,以停止、減輕或預防傷害; 4.「治理」風險管理流程,包括透過持續的監督、審查、記錄、溝通與諮詢、各參與者的角色和責任分配、建立問責制等作法,打造組織內部的風險管理文化。 其次,本報告指出,目前國際主要AI風險管理框架大致上與OECD「互通框架」的四個主要步驟一致,然因涵蓋範圍有別,框架間難免存在差異,最大差異在於「治理」功能融入框架結構的設計、其細項功能、以及術語等方面,惟此些差異並不影響各框架與OECD「互通框架」的一致性。 未來OECD也將基於上述研究,建立AI風險管理的線上互動工具,用以協助各界比較各種AI風險管理框架,並瀏覽多種風險管理的落實方法、工具和實踐方式。OECD的努力或許能促進全球AI治理的一致性,進而減輕企業的合規負擔,其後續發展值得持續追蹤觀察。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。