為鼓勵再生能源科技研發之投入,並確保美國人民能持續享有穩定之電力供給來源,同時增加更多的工作需求機會,美國參議員相繼於今年10月31日和11月10日提出Make it in America Tax Credit Act, S. 1764和Storage Technology for Renewable and Green Energy(STORAGE) Act, S. 1845兩個再生能源投資稅額扣抵法案。 在當今清潔能源技術(clean energy technology)之研發重要性與日俱增的趨勢下,為活絡與刺激美國清潔能源製造產業的成長,美國參議員期待透過S.1764這項法案的通過,額外投注美金5億元於先進製造者稅額扣抵計畫(Advanced Manufacturers Tax Credit program),進而達成強化清潔能源產業發展之目的,同時提供美國境內相關產業市場更多工作機會。另外,為克服再生能源如太陽能和風力等發電方式所具有的不確定性(如風力未達可發電標準等),如何儲存此類綠色能源之技術研發乃為現今各界戮力強化的領域。為集結並鼓勵更多研發資源投注於能源儲存系統(energy storage systems)的研發,美國參議員乃進而提出STORAGE Act,提供以下兩項優惠措施,包括:1. 能源製造商於投入與電網相關之能源儲存系統研發時,得享有20%之投資稅額扣抵(investment tax credit, ITC),其最高上限為美金4億元;2. 裝設商業和家用儲存系統時,得享有30%的投資稅額扣抵,其最高上限為美金1百萬元。 儘管目前上述兩法案仍於美國參議院財政委員會(Senate Finance Committee)進行法案審查,然而在各界對於能源產業儲存技術之提升與促進產業發展的期盼、法案所能帶來更穩定的電力供給與有效儲存再生能源等誘因之下,委員會的審查結果確實已引起各界的關注與期待。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
美國藥品學會建議調整HIPAA隱私權規範以兼顧醫療研究及隱私保護隸屬美國科學院(National Academy of Sciences)之藥品學會(Institute of Medicine)於2009年2月4日發表一份研究報告,指出美國醫療保險可攜及責任法的隱私權規範(HIPAA, Privacy Rule),對於醫療研究中有關個人健康資訊之取得及利用的規定未盡周全,不僅可能成為進行醫療研究時的障礙,亦未能完善保障個人健康資訊。 在目前的規範架構下,是否允許資訊主體概括授權其資料供後續研究利用,並不明確;另外,在以取得資料主體之授權為原則,例外不需取得授權但必須由審查委員會判斷其妥適性的情況下,亦未有足夠明確的標準可資審查委員會判斷依循,此些問題不僅使得醫療研究中之資料取得及運用,產生若干疑慮,亦突顯個人相關健康資料保護之不足。 該報告建議國會應立法授權主管機關制訂一套新的準則,將個人隱私、資料安全及資訊運用透明化等標準,一體適用於所有醫療相關研究的資料取得及利用上;在未來的新準則中,應促進去名化醫療資訊之運用,同時對於未取得資料主體授權的資料逆向識別(re-identification)行為,應增設罰則;此外,審查委員會在判斷得否不經資料主體授權而以其資料進行研究之妥適性時,亦應納入道德考量因素,倘若研究係由聯邦層級的組織所主導,則研究團隊應先證明其已採取充分保護資料隱私及安全的措施,藉以平衡隱私權保護與醫療研究的拉鋸。
美國商標註冊發布新規定:外國人需透過美國執業律師代理其商標業務美國專利商標局(簡稱USPTO)公告新商標規定於8月3日生效,國外申請人、註冊人及商標訴願暨上訴委員會(TTAB)程序的當事人均須透過合法美國執業律師代理其商標業務,包含:向USPTO提出商標申請註冊、商標糾紛。此要求適用於所有商標申請人、註冊人和永久合法居住地或是主要業務所在地於美國境外的當事人。 近期,USPTO發現愈來愈多的國外申請人、註冊人和當事人向USPTO提交不正確或有詐欺嫌疑的文件,其不符合美國商標相關法規或USPTO規則。此次新規定目的在於: 加強外國人遵守美國商標相關法規。 改善向USPTO提出商標案的正確性。 維護美國商標註冊的完整性。 數十年來,全球許多其他國家都有須透過當地律師代理執行業務的相關要求。USPTO局長Andrei Iancu表示:「企業靠著USPTO的商標註冊,決定品牌的重要法律決策,為了確保商標註冊的正確、完整性與公眾利益,USPTO必須要有適當的規定來強制所有申請人和註冊人遵守規定。」;USPTO商標專員Mary Boney Denison亦表示:「相信新規定將有助於提高外國人向USPTO提交的文件品質。」 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」