本文為「經濟部產業技術司科技專案成果」
歐盟執委會(The European Commission)於2022年2月23日發布《企業永續盡職調查指令》草案(Proposal for a Directive on corporate sustainability due diligence),其目的在於促進永續及負責任企業行為,並使企業將人權與環境考量內化至企業營運與公司治理。 本指令要求各歐盟成員國,須確保企業確實執行人權及環境盡職調查,具體要求企業之作為如下: (1) 將盡職調查納入公司政策(第5條); (2) 採取適當的措施,以鑑別企業自身或子公司於營運及其既有商業關係價值鏈之現有或潛在的不利衝擊(adverse impacts)(第6條); (3) 採取適當措施,預防及減緩潛在的不利衝擊,並消弭現有不利衝擊或縮小其影響範圍(第7、8條); (4) 建立並維持申訴制度,確保受前述不利衝擊影響或有相當理由信其將受影響之人、價值鏈中之工作者代表以及關注相關領域的民間社團等利害關係人之申訴管道暢通(第9條); (5) 定期針對自身及子公司之盡職調查政策及措施進行評估,以確保其有效性(第10條); (6) 企業須於每年4月30日前揭露盡職調查相關資訊,受《企業永續報告指令》(Corporate Sustainability Reporting Directive, CSRD)規範之企業須於企業年報中揭露,其他企業則須於企業網站揭露(第11條)。 另一方面,本指令也明定公司董事義務,依據第25、26條,董事於其決策過程須考量短、中、長期之人權、氣候及環境因素;企業亦須指定部分董事負責盡職調查相關治理作為,並定期向董事會進行報告。 適用本指令的歐盟企業有兩種:(1) 員工人數500人以上且全球年營業額1億5,000萬歐元以上之大公司;(2) 員工250人以上之且全球年營業額4,000萬歐元的高衝擊產業(如:紡織、農業、採礦業等)。另外,非歐盟企業若符合前述員工人數之要求,且於歐盟境內之營業額達到前述標準,亦適用本指令。
澳洲及紐西蘭公路監理機關聯合會發布輔助與自動車輛駕駛之教育與訓練研究報告澳洲及紐西蘭公路監理機關聯合會(Austroads)於2020年3月18日發布「輔助駕駛及自動駕駛車輛之駕駛人教育及訓練報告(Education and Training for Drivers of Assisted and Automated Vehicles)」,該報告目的在於研究有哪些技巧、知識與行為,為目前與未來人們使用具有輔助或自駕功能車輛所需具備的;並檢視註冊與發照之相關機關應擔任何種角色,以確保駕照申請人具有足夠能力以使用相關科技。報告中所關注之輔助與自駕車輛,為具有SAE自動駕駛層級第0至第3級之輕型或重型自駕車輛;目前澳洲道路規範並未禁止第3級之自駕車使用,但駕駛人仍應保持對車輛之控制且不得同時進行其他行為。 報告認為目前之駕駛執照發照架構尚不需改變,但註冊與發照機構仍可於輔助與自動駕駛車輛的學習與評估中扮演一些角色,包含: 鼓勵經銷商、製造商與相關利益團體進行有關如何安全運用相關系統,同時避免過度依賴之教育與訓練。 支持將自駕車技術相關之特定重要資訊整合進所有層級之教育與訓練中,但不使用強制性之評估程序進行能力評估。 應關注如何於澳洲設計規範(Australian Design Rules, ADRs)或澳洲新車評估計畫(Australasian New Car Assessment Program, ANCAP)中規範特定車輛之安全公眾教育、整合重要資訊於既有的知識與技術訓練,以及建立強制之學習計畫。 未來澳洲及紐西蘭公路監理機關聯合會將繼續發展相關計畫以實施本報告中之相關建議,以使教育訓練系統更加完善。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
英國資訊委員辦公室(ICO)發布沙盒執行過程中所觀察到的關鍵議題2019年9月英國資訊委員辦公室(Information Commissioner's Office, ICO)啟動沙盒計畫(ICO Sandbox)測試階段(beta phase),由ICO所選10個測試專案,透過解決當今社會問題,例如如何減少暴力犯罪、大學如何促進學生的心理健康、新技術如何改善醫療保健等,期能促進公眾利益。 各專案在滿足創新性和可行性前提下,同時也面臨著複雜的資料保護議題,因此ICO持續與各專案溝通,提供其應用現有個資保護指引之建議,如歐盟一般資料保護規則之資料保護影響評估指導文件(Guide to the GDPR - Data protection impact assessment)、資料保護自我評估工具包(Data protection self-assessment toolkit)等。自2019年3月底開始(受理申請)迄今,ICO沙盒執行過程中所觀察到的關鍵議題如下: 公部門資料應用效益:部份參與者正在克服與公部門進行歷史資料共享,或是如何整合應用大數據等。個人資料與新技術應用,必須與資料主體的權利和自由進行權衡。 同意:確保各方對於「同意」(Consent)之理解,以弭平差異,同時向公眾提供透明資訊。 新技術的挑戰:應用語音生物辨識(voice biometrics)、臉部辨識技術(facial recognition technology, FRT)等,需要在適當基礎上處理特殊類別資料。 資料分析(Data analytics):以符合資料保護的方式進行資料分析,處理特殊類別資料的適法性,評估處理過程中的風險,並檢查可能用於資料分析的資料來源,確保符合目的之應用。 未來的6個月,ICO將持續與各專案合作,使其為有效的解決方案,為公眾提供創新合規之產品與服務,並成為未來結合資料保護和創新應用之規劃藍圖,以奠定隱私保護的基石。