世界智慧財產權組織(WIPO)於2014年12月所公布的世界智慧財產權指標(World Intellectual Property Indicators)基準報告指出,商標、工業設計及實用新型的申請量較前一年度成長,並以中國,美國和日本居前三位;另就申請類別而言,總成長比率分別為專利占9%、商標占6.4%、工業設計占2.5%、和植物品種占6.3%。
報告統計結果顯示,2013年全球專利申請案件約260萬件,比起前一年成長了9%,其中,中國大陸占總申請量的三分之一,其次為美國占總申請量的22%,日本申請量達32萬筆,排名為全球第三位。
報告另指出,專利申請領域依序為,電腦技術佔7.6%、電子機械佔7.2%、測量佔4.7%、數位通訊佔4.5%及醫療技術佔4.3%。
除專利外,其他的智慧財產申請情況,商標申請量上升近500萬件,亦以中國大陸排名首要。另工業設計申請案約達124萬筆,較前一年度成長約2.5%,中國大陸占總申請量的53%。
WIPO總幹事Francis Gurry表示,綜觀全球智慧財產申請全貌,中國大陸及美國於智慧財產權申請量仍明顯成長,而相對於歐洲及日本整體申請量則有明顯衰退之趨勢。
日本政府為求讓日本經濟發展能因應當前國際經濟現勢的結構性變化,相關產業活動有進行革新之必要;因此,日本政府提出「促進我國產業活動革新之產業活力再生特別措施法等法律部分修正案」(以下簡稱修正案),修正案係採包裹立法方式,修正「產業活力再生特別措施法」(簡稱產活法)、「礦工業技術研究組合法」(簡稱研究組合法),以及「產業技術力強化法」(簡稱產技法)等法律。修正案於今(2009)年4月22日經日本國會立法通過,同月30日公布(平成21年4月30日法律第29号),並於同年6月22日施行。以下針對三部法律中之主要修正項目簡介之。 首先,在產活法中,主要修正處是日本政府將出資與民間合作,成立「產業革新機構」股份有限公司,目的在結合公私資源,投資創新活動,包括集結最尖端基礎技術以協助進入應用開發階段,建立連結創投資本、新創企業與擔任將技術事業化之大企業的機制,以及將有技術優勢但埋沒大企業中之技術加以組合,並集中投入人力及資金以發揮價值。其次,在研究組合法中,主要修正處包括,擴大研究組合中可研發主題之技術範圍,放寬加入組合成員之資格,賦予研究組合組織變更、分割合併之可能。最後,在產技法中,主要修正處在於讓國有研發成果可以低於市價之價格實施,以促進將成果活用轉化成為產業實用之支援。日本政府之相關革新作法,其實際成效及對我國之啟發值得後續加以關注。
簡介2012年ITU國際電信大會修訂國際電信規則ITU舉辦之國際電信大會(WCIT2012)甫於2012年12月14日結束,本次會議之重點在於檢討自1988年首次制訂後,便一直都不曾再修訂之國際電信規則(ITRs)。依據會議公布之最終文件內容,修訂包含: 1.網路安全維護:新修訂之規則中,要求各會員國應確保國際電信網路之安全性與穩固性,避免受到技術性損害。 2.管制濫發電子訊息:要求各會國應採取措施,防制未經許可之濫發電子訊息,以減少對國際電信服務之影響。 3.保障身心障礙者獲取電信服務:要求各會員國應參考ITU制訂之標準與建議文件,保障身心障礙者獲取電信服務之權益。 在修訂電信規則之外,本次會議尚通過數項決議,包含: 1.安排特別措施,幫助位居內陸或島嶼型的開發中國家,維護接取國際光纖網路的權益與需求。有鑑於開發中國家與國際網路接駁時,無論就成本或實體線路接取,均需已開發國家之幫助,使其在高速光纖網路發展趨勢下,能以合理費用與國際接軌。 2.設立全球統一緊急服務號碼:由於緊急服務對於全球使用者(特別是旅行者)非常重要,ITU於本項決議中責成技術部門與會員國協調,研究建立全球統一之電信緊急服務號碼。 3.建立發展網際網路之有利環境:意識到網際網路成為全球資訊社會化之重要基礎設施,希望各會員國持續發展與確保網際網路之穩定性與安全性,建構有利網際網路持續發展之環境。 ITU對國際電信標準與規範具有巨大的影響力,對我國未來電信法制之發展亦將有深遠影響,WCIT會議結束後,新修訂之國際電信規則也正提交各會員國進行簽署,在生效後將對各國電信法制造成影響,我國電信法制亦應及早進行研究,關注新規則發展狀況,並分析不足之處,以與國際接軌。
美國監管醫療用基因檢驗之法制與實務趨勢美國監管醫療用基因檢驗之法制與實務趨勢 資訊工業策進會科技法律研究所 2020年03月25日 壹、事件摘要 精準醫療多搭配基因檢驗技術的研發與應用,以幫助醫師針對個體提供精確的診斷及治療服務。以美國現況而言,許多新的醫學檢驗技術在各實驗室中研發,且迅速發展至臨床應用,但必須經過醫療器材上市許可後,始得於實驗室外運用。 美國國會於1976年修正《聯邦食品藥物與化妝法(Federal Food, Drug, and Cosmetic Act)》後,將「體外診斷醫療器材」納入醫療器材的規範,同年美國食品藥物管理署(Food and Drug Administration, FDA)便宣佈對實驗室自行研發之檢驗技術(Laboratory Developed Tests, LDTs)行使「自由裁量權」(Enforcement Discretion),排除於《聯邦食品藥物與化妝法》的管理之外,讓實驗室內LDTs的應用可享較為寬鬆的空間[1] 。 換句話說,由於典型之LDTs僅為實驗室內部使用,且測試方式簡易,需求量亦不高,可由「醫療保險與醫療補助服務中心」(The Center for Medicare & Medicaid service, CMS)依據《臨床實驗室改進修正案(Clinical Laboratory Improvement Amendments, CLIA)[2]》之規範,施行臨床實驗室的品質管理。臨床實驗室於通過CLIA認證後,即可將開發的LDTs進行臨床應用。 然而,1976年迄今,LDTs的發展已經有許多的變化,運作LDTs的實驗室往往獨立於醫療服務機構(Healthcare Delivery Entity)之外,而依賴於許多高科技的儀器、軟體來產生結果及解釋,增加了許多以往沒有的風險;其商業模式也已經大幅的改變,已經大量製造、用於直接的臨床診斷決策上[3]。因此,美國FDA認為有必要引進一個全面性的監管架構管理LDTs,而非像過去一樣,將其排除於《聯邦食品藥物與化妝法》的管理之外。 貳、重點說明 FDA近年來加強基因檢驗風險監管之具體行動,包括LDTs監管架構之研擬以及加強實務取締,以保障病人的權益。 一、LDTs監管架構指引草案 美國FDA曾於2014年公布兩項指導文件,分別為「實驗室自行研發檢驗方法監管架構指引草案[4]」以及「實驗室自行研發檢驗技術須執行通知上市與不良事件通報之草案[5]」(以下統稱LDTs監管架構指引草案)。LDTs監管架構指引草案希望提升LDTs的規管密度,並規劃將LDTs分為數個不同的類別,依據其風險程度的高低,分別要求其進行包含取得上市前許可、符合品質系統規範等不同程度之要求。 該指引草案公布後,受到各臨床實驗室、醫療單位、病人與傳統體外診斷試劑製造商、政府部門等熱烈討論。特別是業界擔憂監管密度的提高,會扼殺臨床實驗室的創新意願,使得實驗檢驗技術、方法與應用停滯,並耗費大量的人力與金錢成本。 美國FDA最後於2017年1月13日說明,短期內不會執行該指引草案內容,但會尋求更加全面的立法解決方案[6]。歸納各界對指引草案之看法,顯示對LDTs的額外監督是必要的,但對於如何監管則有不同看法,未來主管機關應基於下列原則,提出符合科學證據、經濟效益並兼顧臨床安全性之管理方案,重點摘述如下: (一)以風險等級為基礎,並分階段實施監督 之後的四年內將分階段要求LDTs逐步進行上市前審查,第一年實驗室必須回報LDTs所有的嚴重不良反應;第二年將要求與第三級高風險醫療器材具有相同用途的新型或改良LDTs,必須經過一致的上市前審查;第三年要求與第二級中風險醫療器材具有相同用途的新型或改良LDTs,必須經過一致的510(k)上市前通知;第四年則完成LDTs全面性的監督,並且原則上與醫療器材採取一致標準。 (二)以檢驗之分析效能與臨床有效性,作為核准基礎 目前CMS已有實驗室檢驗之臨床效用(clinical utility)審查,但與FDA上市前審查所需之分析效能與臨床有效性有所差異。是故,FDA將制定適合的審查標準,以減輕實驗室提交審查的負擔,並加速上市前審查的審核時間。 (三)不良反應通報系統 將參考既有醫療器材上市後監督機制(postmarket surveillance),監控LDTs在真實世界的效能及臨床結果(real-world performance and clinical outcomes)。 (四)健全實驗室之品質系統 FDA將會密切與CMS合作加強實驗室的品質系統要求,但會與既有CLIA等認證制度相互調和、不會重複監督。 (五)公開檢驗性能資訊供大眾取得 實驗室必須將LDTs檢驗的分析效度及臨床有效性等相關資訊,公開讓民眾可取得。 (六)免除特定類型檢驗之上市前審查 對於特定類型的LDTs可免除上市前審查、品質系統及註冊登記之義務,如:對健康影響較低者、罕見疾病使用之LDTs等。 二、加強基因檢驗之執法 (一)23 and Me遺傳健康風險個人基因體服務 雖然在LDTs規範上,美國FDA暫時未有全盤性的改變;但在個案上,開始有逐步的調整。美國FDA在2013年11月時,發函警告生技公司「23 and Me」,認為其銷售的「個人基因體服務」(personal genome service, PGS)應該屬於《聯邦食品藥物與化妝法》所規定的第三級醫療器材(風險程度最高的醫療器材),但由於其未取得美國FDA的上市前許可,因此應該立刻停售;其後,23 and Me將其旗下的「遺傳健康風險個人基因體服務」(PGS Genetic Health Risk)向美國FDA申請並取得第二級醫療器材許可[7]。 (二)Inova藥物反應基因檢驗 2019年另外一起案例,亦顯示美國FDA從嚴限制LDTs在實驗室外應用之決心。美國FDA於2019年4月4日向Inova基因體實驗室(Inova Genomics Laboratory)寄發通知函,表示其自行研發之MediMap Plus基因檢驗產品,用於預測病人對藥品的反應與接收度,必須先完成FDA上市前審查程序,始得進行商業販售[8]。 Inova基因體實驗室雖回覆表示,MediMap Plus基因檢驗產品屬於LDTs的範疇,所以不應該受到FDA上市前審查或任何標示要求之拘束。嗣後,FDA則直接寄發警告函,申明其並未針對LDTs創設任何責任免除條款,且為了促進公眾安全,FDA對於LDTs保留裁量權[9]。對於FDA的警告,Inova決定停止執行MediMap Plus之販售,也不會申請上市前審查[10]。 三、小結 由於基因檢驗之安全及確效涉及面向十分廣泛,美國監管體系主要係以《聯邦食品藥物與化妝法》之醫療器材規範,搭配行之多年的CLIA實驗室品質管理制度,以完備各環節之風險管理。申言之,即便基因檢驗技術僅屬實驗室內應用,並未在外流通,亦屬實驗室品質管理之範疇,必須依據CLIA實驗室分類進行能力測試或實地查核。 其次,美國對於LDTs的監管雖然認為不宜貿然與醫療器材規範一致,但未來仍將參考醫療器材的風險等級基礎,並盡量提高審查的效率,此趨勢與歐盟新的醫療器材法規[11]一致。 參、事件評析 我國近年來政府與民間在基因檢驗的監管上亦有所討論,特別是LDTs之管理方向、管制密度之取捨、實驗室品質標準等[12]。從美國醫療用基因檢驗監管趨勢觀之,建議我國未來或可釐清不同目的之基因檢驗,如商業用、實驗用、醫療用等,進而明確醫療用基因檢驗之監管密度,並依不同風險程度採取分級監理,以在新技術應用與病人權益保護之間取得平衡。 [1]Center for Devices and Radiological Health, Food and Drug Administration, Draft Guidance for Industry, Food and Drug Administration Staff, and Clinical Laboratories: Framework for Regulatory Oversight of Laboratory Developed Tests (LDTs), Oct. 03, 2014, https://www.fda.gov/media/89841/download (last visited Jan. 07, 2020), at 6-7. [2]42 USC 263a, available at https://www.govinfo.gov/content/pkg/USCODE-2011-title42/pdf/USCODE-2011-title42-chap6A-subchapII-partF-subpart2-sec263a.pdf (last visited Dec. 26, 2019). [3]呂雅情,〈實驗室自行研發檢驗技術(LDTs)的發展與法規管理現況〉,當代醫藥法規月刊,2018/02/09,https://www.cde.org.tw/Content/Files/Knowledge/cc18e890-c1e3-4e6e-8bbd-45d7afd6cee9.pdf(最後瀏覽日:2020/01/07),頁17。 [4]Supra note 1, at 7-8. [5]id. at 30. [6]Food and Drug Administration, Discussion Paper on Laboratory Developed Tests (LDTs), Jan. 13, 2017, https://www.fda.gov/media/102367/download (last visited Jan. 07, 2020), at 1. [7]何建志,〈精準醫學趨勢下基因檢驗與消費者保護法律問題〉,《月旦醫事法報告》,第25期,頁44-45(2018)。 [8]Food and Drug Administration, Inova Genomics Laboratory, Apr. 04, 2019, https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/warning-letters/inova-genomics-laboratory-577422-04042019 (last visited Dec. 19, 2019). [9]Food and Drug Administration, Laboratory Developed Tests, Sep. 27, 2018, https://www.fda.gov/medical-devices/vitro-diagnostics/laboratory-developed-tests?fbclid=IwAR3gOzax6O0eUx67IpZBNpmvPrW6ynuP0P99Dlt4AGKZtxvwGSoYOx5EmFA (last visited Dec. 19, 2019). [10]GenomeWeb, Inova Decides to End PGx Test Offerings in Response to FDA Warning Letter, Apr. 15, 2019, https://www.genomeweb.com/regulatory-news/inova-decides-end-pgx-test-offerings-response-fda-warning-letter#.XNkp0hQzbIU (last visited Dec. 19, 2019). [11]歐盟2017年5月25正式生效新版醫療器材法規(Medical Devices Regulations, MDR; Regulation (EU) 2017/745)以及體外診斷醫療器材法規(In Vitro Diagnostic Devices Regulations, IVDR;Regulation (EU) 2017/746)。 [12]蔡雅雯、林工凱、黃品欽、謝文祥,〈基因檢驗法規監管方向初探〉,《台灣醫界》,第62卷第12期,2019/12,https://www.tma.tw/ltk/108621207.pdf(最後瀏覽日:2020/02/06)。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).