日本經產省於2015年1月15日提出《不正競爭防止法》中期報告書並預計將提出不正競爭防止法修正案

  為因應日本2014年接連發生重大營業秘密外洩之事件而使日本國內公司蒙受鉅額損失,日本經濟產業省於去年9月開始,積極地展開《不正競爭防止法》修法專家會議,並在2015年1月15日舉行的會議上,揭露了彙整各界公開意見後之《不正競爭防止法》中期報告書(中間とりまとめ),以作為未來修法方向之指引。

  該報告書列出之修法方向區分為民事及刑事規定。第一,民事的修正重點有以下三點:(1) 減輕原告(受害企業)之舉證責任,而改由被告(非法使用營業秘密之企業)負擔;(2) 除斥期間之延長:將現行法規定之除斥期間,由10年延至20年;(3) 使用非法營業秘密而製造的物品,禁止轉讓或出口;以及新增邊境措施之規範。

  第二,刑事的修正重點則有以下六點:(1) 擴大國外犯罪的處罰範圍:目前現行法僅規範「日本國內所管理之營業秘密」在國外「使用、開示」 之行為,未來將新增處罰在國外之「取得」營業秘密之行為;(2) 新增未遂犯規定,同時將繼續檢討新增共犯及教唆之處罰態樣;(3) 現行法僅規範竊取營業秘密者本人以及藉由前者直接不法取得營業秘密者為處罰對象,但鑒於智慧型手機、平版電腦等裝置(携帯情報通信端末)之普及,造成營業秘密的竊取及使用型態趨向多樣化,是故未來將新增第三人不法取得之相關處罰規定;(4) 使用非法營業秘密而製造的物品,禁止轉讓或出口:新增相關刑罰規定;(5) 法定刑之提高:目前個人最高罰金為1000萬日圓、企業則為3億日圓,未來預計調整罰金之上限;並且,將新增沒收犯罪收益及海外加重處罰之規定;(6) 擬由告訴乃論改為非告訴乃論。

  綜上,經產省力爭在2015年1月26日開始的通常國會期間內,依上述之改正要點為基礎,正式提交《不正競爭防止法》之修正案,預計最快將於2016年開始實行新法 ,後續的立法進度,值得吾人持續關注。

相關連結
相關附件
※ 日本經產省於2015年1月15日提出《不正競爭防止法》中期報告書並預計將提出不正競爭防止法修正案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6773&no=57&tp=1 (最後瀏覽日:2026/01/03)
引註此篇文章
你可能還會想看
英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

網路廣告商標侵權爭議之最新實務發展趨勢介紹

德國公佈聯邦政府人工智慧戰略要點

  德國政府於2018年7月18公佈「聯邦政府人工智慧戰略要點」(Key points for a Federal Government Strategy on Artificial Intelligence),係由德國聯邦經濟事務及能源部、聯邦教育及研究部,與聯邦勞動及社會事務部共同撰寫而成。 德國政府表示該要點將作為推動人工智慧技術與產業發展的基礎方針,並希望以負責任的方式以及朝向社會利益發展的方向進行人工智慧開發與應用。   德國人工智慧戰略要點摘要如下: 1. 研究能量:必須大幅增加研究支出並且爭取世界一流人才。 2. 人工智慧能力應泛分佈在社會各處:各學科與產業領域皆需要人工智慧。 3. 資料作為人工智慧發展的基礎:資料是人工智慧發展的重要關鍵,德國的資料發展重點將放在資料品質的強化。 4. 基礎設施:人工智慧中重要的技術「深度學習」,不僅需要大量資料,同時還需要強大的計算能力,德國需要加強計算能力的硬體設備。 5. 經濟應用:德國數位化發展的下一步需要仰賴人工智慧技術,尤其是中小企業採納人工智慧技術方面將會是焦點之一。 6. 社會法制:人工智慧發展過程中牽涉許多道德以及法制、監管議題,德國政府認為這些都必須請不同利害關係人共同公開討論。 7. 國際合作:德國作為歐盟會員國之一,未來的人工智慧發展將力求與歐盟各國合作。   整體而言,德國的人工智慧戰略著重在建立人工智慧生態系統,並強調人與機器之間的合作關係,為人工智慧產業發展奠定良好基礎。德國政府將基於此要點繼續制定進一步的人工智慧戰略,並預計將於2018年12月公佈德國的人工智慧戰略完整報告。

美國政府與業者合作補助低收入戶學童低價的寬頻網路與電腦

  美國聯邦通訊委員會FCC於2011年12月13日宣布新的補助計畫,提供低價的寬頻網路及電腦給計百萬戶之低收入戶,以消除數位落差。   美國聯準會(Federal Reserve)的研究報告指出,在同樣條件下,家裡擁有電腦與寬頻網路的學生比未擁有的學生,畢業率高出6%至8%。由此可見數位發展普及化的重要性。   與新加坡和南韓高達90%的寬頻普及率相比,美國現今仍有將近三分之一的人口,亦即約一億名美國民眾無法在家使用寬頻網路,因此FCC與相關業者成立一個名為「Connect to Compete」的非營利組織(private and nonprofit sector partnership),以提高寬頻網路的普及,並改善弱勢團體與一般民眾的落差。且此一計畫所需的經費非由政府支出、全民買單,而是全數由業者負擔。   此項計畫的補助標準為,任何符合公立學校午餐補助資格的家庭即可受補助,其每個月補助9.95美元以接取寬頻網路,並可購買最高150美元的電腦、並獲得免費的數位知識訓練。   此計畫規劃自2012年春季開始實施,部份城市率先執行,並預計於2012年9月前延伸至全國各個城市實施。

TOP