中國大陸食品安全法修訂草案二審稿,將基因改造食品標識明確列入

  2014年12月22日,中國大陸食品安全法修訂草案二審稿增加關於食品貯存和運輸、食用農產品市場流通、基因改造食品標識(中國大陸用語為轉基因食品標籤)等方面之內容。二審稿規定,生產經營基改食品皆應按照規定進行標識,未按規定進行標識的,沒收違法所得和生產工具、設備等物品,最高可處貨值金額五倍以上十倍以下罰款,情節嚴重者責令停產停業,直至吊銷許可證。對於基因改造標識,中國大陸已於《農業轉基因生物安全管理條例》有規定,此次二審稿為保障消費者的知情權,增加加重食品安全違法行為的法律責任,採取多種手段嚴懲,並希望以法律形式將其確定。

  我國食品安全衛生管理法於2014年12月10日修法中,對於基改食品標識部分並未修訂,僅在第22條及24條規定了要標識「食品之容器或外包裝,應以中文及通用符號,明顯標示下列事項…(包含基因改造食品原料)」以及「食品添加物之容器或外包裝,應以中文及通用符號,明顯標示下列事項中…(含基因改造食品添加物之原料)」。然而,我國與中國大陸此次修法雖皆有明訂,但明訂方式、標準等並未描述,又如美國佛蒙特州有意立法通過之基改食品標識法也在今年2015年1月因有爭議舉行公聽會,使該法令生效前恐有中止之情事。目前看來,不同國家有不同的基因改造食品標識政策,但國際間仍致力建立一套統一的規範。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 中國大陸食品安全法修訂草案二審稿,將基因改造食品標識明確列入, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6782&no=57&tp=1 (最後瀏覽日:2025/12/03)
引註此篇文章
你可能還會想看
日本P2P軟體Winny開發者再遭起訴,並具體求刑一年

日本東京地檢署以助長著作權侵害為由,於 7 月 3 日 向東京地方法院對日本知名檔案交換軟體( P2P ) Winny 的開發者金子 勇提起訴訟,並具體求處有期徒刑一年。這是繼 2004 年 5 月京都地檢署起訴金子 勇後,對同一 P2P 軟體開發者另為起訴的案件。   2002 年,東京大學資訊理工學系研究助理金子 勇開發出可供他人使用的分散式 P2P 軟體 Winny ,旋即受到廣大網友的歡迎。使用者透過 Winny ,不僅交換著未經授權的音樂、影片檔案,甚至包括了部份的警方或自衛隊官方文件。而日本各大企業,如日本雅虎、富士通及 NEC 等,也陸續傳出因公司職員使用 Winny 而導致員工及客戶個人資料外洩的事件。    針對 Winny 開發者起訴案件,目前京都地方法院尚未作出判決,而日本東京地方法院已預定於 9 月 4 日 進行公開審判。此外,因應 Winny 所肇致的資安問題,各相關企業也順勢推出可過濾 Winny 的軟硬體設備,如日本京瓷公司( KCCS )即於 7 月 10 推出企業網路管理軟體,除可偵測內部電腦是否安裝 Winny 外,亦可阻絕已安裝 Winny 的電腦連接至企業網路。

日本發布創新治理報告書,主張強化企業等對法規範形成的實質參與

  日本經濟產業省於2020年7月13日發布「創新治理:實現Society5.0的法規與結構設計(GOVERNANCE INNOVATION: Society5.0の実現に向けた法とアーキテクチャのリ・デザイン)」報告書。其作成背景係依據日本在去(2019)年G20峰會時,基於大阪框架(大阪トラック、Osaka Track)下的「可資信任的資料自由流通機制(Data Free Flow with Trust(DFFT))願景,所提出的創新治理目標。該目標指出,過往的治理模式主要依靠法律規範,但明顯已追趕不及數位化與創新的快速步伐,致生新型態風險無法獲得有效控管、法律可能阻礙創新等問題,因而有必要革新治理模式,以掃除創新活動的障礙。基此,就上述創新治理模式的必要性與方式,日本召集國內外法律、經濟、科技、經濟等各界專家徵求意見進行討論,彙整後作成本報告書。   本報告書主張,應擺脫法規範的設計、法遵與執行,均由國家主導的傳統模式,建立提高企業參與規範擬定與實施程度的治理型態。具體主要包含以下作法: (1)法規範制定層面:規範之制定方向,改以作成價值決定的目的導向為主。至於細節性的行為義務,包含企業如何在數位化的虛擬場域內,透過程式語言等途徑落實上述法目的,則應由該些企業、以及在虛擬場域活動的社群或個人等利害關係人共同參與擬定相關的指引或標準。 (2)法遵層面:如上(1)所述,未來法規範制定將轉為形塑價值與目的為主,不會明確訂定企業的行為義務,而交由企業來擬訂。企業所制定之行為規範能否達成法規範目的,則須仰賴企業主動揭露其法遵方法,供外界檢視。因此,除企業應採用創新手法達成法目的、並對內落實法遵事項的說明外,應運用各種內外部查核機制來控管風險。同時,應著手研發相關技術或措施,讓利害關係人得取用企業之即時資料,以隨時確認企業所採取方法有無達成法遵,實現有效監督。 (3)執法層面:政府應以企業之行為對社會產生影響的程度,作為執法標準。若遭遇AI參與決策而衍生的事故,不應歸責於個人,而應建立獎勵機制,鼓勵企業積極協助究明事故原因。另一方面,亦應推動訴訟與訴訟外紛爭解決機制的線上化(Online Dispute Resolution, ODR),例如共享經濟平台服務的認證機制與標準、就電商平台上發生的小額消費糾紛由平台透過公告罰則等方式抑止與處理糾紛。

美國網路安全暨基礎設施安全局(CISA)成立聯合網路防禦協作機制(Joint Cyber Defense Collaborative,JCDC),將領導推動國家網路聯防計畫

  美國網路安全暨基礎設施安全局(Cybersecurity and Infrastructure Security Agency,以下簡稱CISA)於2021年8月宣布成立聯合網路防禦協作機制(Joint Cyber Defense Collaborative,以下簡稱JCDC),依據《國防授權法》(National Defense Authorization Act of 2021, NDAA)所賦予的權限,匯集公私部門協力合作,以共同抵禦關鍵基礎設施的網路威脅,從而引領國家網路防禦計畫的制定。   聯合網路防禦協作辦公室(JCDC's office)將由具代表性的聯邦政府單位所組成,包括國土安全部(Department of Homeland Security, DHS)、司法部(Department of Justice, DOJ)、美國網路司令部(United States Cyber Command, USCYBERCOM)、國家安全局(National Security Agency, NSA)、聯邦調查局(Federal Bureau of Investigation, FBI)和國家情報總監辦公室(Office of the Director of National Intelligence, ODNI)。此外,JCDC將與自願參與的夥伴合作、協商,包括州、地方、部落和地區政府、資訊共享與分析組織和中心(ISAOs/ISACs),以及關鍵資訊系統的擁有者和營運商,以及其他私人企業實體等(例如:Microsoft、Amazon、google等服務提供商)。   目的在藉由這項新的合作機制,協調跨聯邦部門、各州地方政府、民間或組織等合作夥伴,來識別、防禦、檢測和應對涉及國家利益或關鍵基礎設施的惡意網路攻擊,尤其是勒索軟體,同時建立事件應變框架,進而提升國家整體資安防護和應變能力。   是以,JCDC此一新單位有以下特點: 具獨特的公私部門規劃要求和能力。 落實有效協調機制。 建立一套共同風險優先項目,並提供共享資訊。 制定、協調網路防禦計畫。 進行聯合演練和評估,以妥適衡量網路防禦行動的有效性。   而JCDC主要功能,整理如下: 全面、全國性的計畫,以處理穩定操作和事件期間的風險。 對情資進行分析,使公私合作夥伴間能採取應對風險的協調行動。 整合網路防禦能力,以保護國家的關鍵基礎設施。 確保網路防禦行動計畫具有適當性,以抵禦對方針對美國發動的網路攻擊。 計畫和合作的機動性,以滿足公私部門的網路防禦需求。 制度化的演練和評估,以持續衡量網路防禦計畫和能力的有效性。 與特定風險管理部門(Sector Risk Management Agencies, SRMAs)密切合作(例如:國土安全部-通訊部門、關鍵製造部門、資訊技術等),將其獨特專業知識用於量身定制計畫,以應對風險。

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP