日本 – 能否移除個人資料登載 各地法院見解有所不同

  為促進政府效能、提高服務品質、協助身份確認、減輕居民負擔,以期邁向先進資訊社會,日本政府近年致力推動「居民基本資料」(「住民基本台帳」;包括姓名、住址、性別、出生年月日及居民編號等)網路化,作為電子化政府基礎架構之一環。惟資料之蒐集範圍為何、傳輸網路安全與否、是否會遭政府濫用、有無可能遭相關人員洩漏於外移作他用等問題始終受到質疑,目前不僅計有福島?矢祭町、東京都杉並??立市三處地方政府暫緩推行,民間團體更分別在日本全國各地 13 個地方法院提起民事訴訟,主張「居民基本資料網路」(「住民基本台帳 ?????? 」;「住基 ??? 」)侵犯個人之隱私權及人格權,除請求移除已登錄之個人資料外,並要求中央政府、地方政府及掌理該網路的財團法人地方自治資訊中心(財?法人地方自治情報 ???? Local Authorities Systems Development Center, LASDEC )應負擔合計每人 22 萬日圓的損害賠償。


  對此,金?地方法院首先作成判決( 2005 5 30 日),雖駁回原告方面的損害賠償請求,不過移除已登錄資料部分則判命原告勝訴。該院認為,「隱私」及「便利」之間究竟何者優先,應本諸居民個人意思自行決定,而非被告方面得以促進行政效率為由逕為取捨。然時隔一日( 2005 5 31 日),名古屋地方法院卻作出見解完全相反的判決,認為「居民基本資料網路」已採行必要之資料保護措施,個人隱私不至於輕易遭受侵害,原告方面的兩項請求均應予以駁回。

  
        個人基本資料應予保護,當屬不爭之論,但究竟該如何保護、保護又該到何種程度,各方立場不同、偏重各異,看法常有差距;日本「居民基本資料網路」事件之原被告間、甚至不同地方法院間的見解差異,即為適例。目前正值我國研議修正個人資料保護法之際,前開事件今後如何發展,或有吾人持續觀察並深入思索之餘地。

相關連結
※ 日本 – 能否移除個人資料登載 各地法院見解有所不同, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=680&no=57&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

ECtHR就國會發言揭露個資是否構成隱私權侵害作成判決,強調應尊重國家之裁量

歐洲人權法院(European Court of Human Rights,簡稱ECtHR)於2025年4月8日就Green v. The UK案作成判決,針對國會議員發言揭露個資是否構成隱私權侵害之爭議,強調國家就衡平立法權與司法權的界線、言論自由與隱私保護等利益享有裁量權,駁回了申訴人之請求。 一、事實背景 本案起源於英國每日電訊報(Telegraph)試圖就英國零售集團Arcadia的前員工針對其董事長Philip Green的職場性騷擾與霸凌指控進行報導。先前,Arcadia及Green已與涉及相關糾紛的員工達成了和解協議,依據協議所附保密協定,員工除正當揭露(如向警察揭露犯罪)外不得洩露相關資訊。Green於Telegraph於報導前徵求當事人評論時發現資訊遭洩露,隨即向法院申請禁制令與暫時禁制令,英國上訴法院嗣後批准了暫時禁制令,認定Telegraph獲得的資訊很可能來自違反保密協定的揭露,也不認為欲報導的內容當然具備凌駕當事人可能蒙受之損害的公共利益。Telegraph最終尊重了暫時禁制令。惟隔日,一位英國上議院議員援引言論免責權,於議會發表了雖不涉及細節,但具體提及Green身分和關於其性騷擾、霸凌的指控,並提及Telegraph遭禁制報導一事。Green因此向議會申訴,認為議員違反了司法保密規則(sub judice rule)(編按:上議院曾做成決議,認除非具全國重要性,議員不得於動議、辯論或質問中論及繫屬於法院中的個案)及濫用免責權,但上議院標準專員(House of Lords Commissioner for Standards)認為司法保密規則不屬於《上議院行為準則》。Green嗣後在法院中試圖向Telegraph請求賠償,認為Telegraph應要為議員的發言負責,違反了禁制令,並要求提供線人身分。Telegraph抗辯,在議員享有免責權的前提下,法院毋庸受理本案處理其責任問題。Green向ECtHR提出申訴,主張國家對議員使用免責權揭露受禁制令約束的資訊的權力缺乏事前和事後控制,侵犯了其受歐洲人權公約(ECHR)第8條保障的私生活權。 二、法院判斷 法院認為由於受暫時禁制令保護的資訊被揭露,Green的私生活權利確實受到干預。然而,法院不認為國家違反了公約課予國家保護私生活權之積極義務(positive obligation)。核心理由在於:國家對如何履行積極義務有廣泛的裁量權,且於各國就保護方式較無共識,或涉及基本權利間之衡平時,法院尤應尊重裁量空間。 針對本案,法院認為:(1)議會中的言論自由享有較高程度的保護,對其干涉需要非常重大的理由(very weighty reasons);(2)涉及司法權與立法權的具體界線,以及言論自由與隱私保護的利益衡量;(3)必須考量議會自治原則在多國之間有廣泛共識;(4)英國並非完全沒有針對國會議員發言的事前、事後控制措施。儘管非屬《上議院行為準則》,但上議院所做成的司法保密規則決議,仍屬一定程度的事前控制。事後來看,國會議員若確實構成濫用免責權,法院也可以判處蔑視法庭罪。 法院總結認為,基於原則上各國議會較國際法院,更適合評估限制議會行為之必要性與手段,法院要取代這個判斷須要非常重大的理由,但本案中Green並無法成功論述這個理由存在,因此駁回Green的主張。

英國持續推動智慧電表電量消費資料所有權之管制

Linux創辦人捍衛商標權

  Linux 創辦人 Linus Torvalds 決心捍衛自己的商標權,並堅稱其要求商標再授權是賠錢生意。   Torvalds 日前委託律師發函給澳洲的 90 家公司,要求他們取銷任何 Linux 名稱的使用,並應向 Linux 商標的授權單位 – 非營利組織 Linux Mark Institute 購買再授權。這些公司必需個別支付 200 美元到 5,000 美元,以取得 Linux 商標的再授權,導致部分開放原始碼社群成員指控 Torvalds 想藉 Linux 的成功大撈一筆。 Torvalds 否認他自己,或任何人因 Linux 商標的再授權而賺錢,因為法律成本遠高於授權費,而律師所發出的通知函,僅是維護一個商標的必要動作。   Torvalds 最近也被人指控偽善,某些開放原始碼社群宣稱他對軟體專利的批評,與他行使專利權的作為互相矛盾, Torvalds 本身並未就此回應。惟反歐盟軟體專利規定的活動領袖,最近還被譽為智慧財產領域最重要人物的 Florian Mueller 表示,商標及著作權與軟體專利不同,軟體專利是有利於反競爭陣營和無產品的敲詐者的有力工具,但著作權和商標大致上獎勵那些創造和銷售真正產品的人,不加區隔地反對智慧財產權,是違法且無意義的;其並警告「反智慧財產激進主義」對開放原始碼的形象有害,某些右翼政客也同意 Bill Gates 的觀點,認為限制智慧財產權等於是共產主義,因此開放原始碼社群有必要將自己和反智慧財產權的觀點脫鉤。

TOP