美國農業部( USDA )在今( 2006 )年 8 月 18 日 公布,在 Arkansas 及 Missouri 的米倉發現,這些地方所儲存的美國長粒米( long grain rice )中含有 Bayer CropScience 未經核准的基因改造生物種。高品質的長粒米米粒細長,具有 20 %~ 25 %的中直鏈澱粉含量,米飯柔軟但鬆散,冷飯不變硬,在國際稻米市場有很高的評價,價格也最高。進口此型白米的國家有西歐、中東、加勒比海各國、新加坡、馬來西亞等,出口國為泰國,在歐洲市場上的售價,美國米略高於泰國米。美國長粒米的主要生產地是在 Arkansas ,意外事件發生時,當地農夫正在收成稻米。 截至目前 8 月底,美國本土因為基改稻米的基因污染了美國長粒米( U.S. long grain rice )的供應,而向 Bayer CropScience 提出損害賠償的訴訟已有三起,主要內容為請求因為基因污染致美國長粒米的價格下跌的損害賠償。另 由於相關的安全審查並未檢測出來此次流入外銷市場的美國長粒米,因此 雖然 USDA 表示混入 GMO 的長粒米並不會對人體或環境造成危害,但 世界各大進口國仍採取了相關緊急措施。 例如,日本於此消息一經公布後,當即停止美國長粒米的進口,而歐盟則表示只有經檢測證實從美國進口的長粒米未含有 Bayer CropScience 所研發尚未經許可之 GMO 特性,始得上架販售。
德國新修正稅法將加重電子商務營運商之責任德國政府於2018年8月1日通過「2018年稅法」(Jahressteuergesetzes 2018),新規範將於2019年生效。「2018年稅法」修正內容包括所得稅、公司稅、貿易稅及增值稅等多項稅收法規。其中增值稅(Umsatzsteuer)之修正主要目的係為了避免德國境外之電子商務業者在與德國民眾進行電子商務交易時,未繳增值稅(Umsatzsteuerausfällen)之情況發生,為了確保相關之稅收繳納,透過本次修法加強了電子商務平台營運商之管理義務,平台營運商將有義務提供德國政府在其平台交易之賣家(包括企業與個人)相關資訊並確保其支付相關稅負。 德國增值稅(英文為:Value Added Tax)適用對象為德國境內所發生的進口、商業及服務交易行為,從歐盟以外地區進口到德國的貨物或向德國消費者提供跨境銷售皆需要繳納19%的增值稅。但據德國稅務局的資料顯示,德國的跨境電子商務交易每年約有5億歐元的增值稅未能被徵收。因此,德國政府修正的稅法中,大幅增加了平台營運商之義務(第22f款UStG)及實際責任(第25e款UStG)。修正之稅法要求平台營運商必須記錄下列事項,且若利用該平台之賣家未繳稅款,其平台營運商則須為該賣家繳交必要的增值稅: 賣家的全名和地址; 企業賣家之德國稅號及增值稅識別號碼;(個人賣家則為含有生日的身分證件) 上述稅務證明之有效日期; 每筆交易的發貨地址及收貨地址; 銷售時間及銷售額。 新修正稅法可大幅避免跨境電商逃漏稅收,同時也保護了德國境內的零售商。因為過去若國外電子商務賣家逃漏增值稅,則會與德國境內零售商所賣之貨物產生約兩成價差(稅率為19%),進而形成不公平競爭,而新法旨在消弭這樣不公平的情況。但這樣的方式對於平台營運商之責任及營運成本皆加重,故新法對於電子商務平台方的影響,有待未來進一步觀察。
淺論中國大陸專利間接侵權規範之爭議 美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。