根據美國瑞生國際律師事務所(Latham & Watkins)於2024年1月發布的ESG年度報告指出,隨漂綠議題延燒,ESG報告不受信任為一課題,因此國際逐步擴大ESG監管,多國透過立法強制企業應揭露永續報告書或供應鏈資訊,比如:歐盟於2023年1月生效之《企業永續報告指令》(Corporate Sustainability Reporting Directive, CSRD),要求企業揭露的永續資訊需增加供應鏈資訊的透明度;美國證券交易委員會(SEC)於2024年3月6日通過規則,要求上市公司及公開發行公司揭露碳排放報告等氣候風險相關資訊。 為因應ESG帶來的挑戰,報告建議企業應採取流程化管理方式,了解產品進出口涉及的其他國家對ESG揭露資訊的要求,加以規劃並建置資料控管規範、進行人員教育訓練以及確認ESG相關資料的所有權歸屬。 由於碳排放量的計算沒有一致標準,且難以確保供應鏈上下游所提供的碳排資訊真實、未經竄改等問題,外界不容易信任企業永續發展書提倡的供應鏈減碳策略。國內企業可參考資策會科法所創意智財中心發布的《重要數位資料治理暨管理制度規範(EDGS)》,透過流程化管理,從制度規劃及留存供應鏈二氧化碳排放量或二氧化碳減量等產品相關資料歷程來增進ESG資料透明度。 本文同步刊登於TIPS網(https://www.tips.org.tw)
美國國會推動研擬國家潔淨能源標準法案美國參議員院能源與自然資源委員會(U.S. Senate Committee on Energy and Natural Resources)主席Jeff Bingaman於2012年3月7日向國會提出推動建立潔淨能源標準(The Clean Energy Standard,CES)法案。該提案的主要內容為,自2015年開始,所有電力業者(electric utility)的能源必須最少有24%是來自於潔淨能源,並且每年增加3%直至2035年達到84%。 潔淨能源發電除了風力、太陽能等再生能源發電之外,還包括核能、天然氣和碳捕集與儲存(Carbon capture and storage, CCS)技術的燃煤火力發電等。同時,為了鼓勵發電廠採用再生能源,零碳發電機將可以得到全額的信貸,低碳發電機則可依其碳濃度(carbon intensity)(與最高效的燃煤火力發電廠的之比較)的比例獲得部分貸款。為使提案獲得支持,提案中並沒有對總量排放或是發電量成長上做出限制。至目前為止,共有八位民主黨參議員為該法案的共同提案人,Bingaman預計將在未來幾週內與行政官員和公用事業官員舉行聽證,並尋求支持。 歐巴馬總統在2011和2012年的國情咨文中皆呼籲國會通過潔淨能源標準,並且在2013年的預算提案中提到,確保美國在潔淨能源經濟的領導地位是政府的戰略核心之一,此法案的推動便是為了呼應美國目前重要的政策走向,因此政府對國會通過該法案亦表達了支持的立場。,潔淨能源標準將會驅動潔淨能源領域中的創新和投資,並且帶來大量的就業機會,幫助美國維持在潔淨能源經濟中的領先地位,因此,潔淨能源標準建立的討論是重要且必須的,而可以預期的是,除了吸引大量投資者、發展美國的多元化電力發電態樣和碳排放量的大幅下降以外,更重要的是,將引起世界各國對此議題的廣泛討論,因而值得持續關注。
美國科羅拉多州通過《人工智慧消費者保護法》2024年5月17日,科羅拉多州州長簽署了《人工智慧消費者保護法》(Consumer Protections for Artificial Intelligence Act,Colorado AI Act,下簡稱本法),其內容將增訂於《科羅拉多州修訂法規》(Colorado Revised Statutes,簡稱CRS)第6篇第17部分,是美國第一部廣泛對AI規範的法律,將於2026年2月1日生效。 本法旨在解決「高風險人工智慧系統」的演算法歧視(Algorithmic Discrimination)的問題 ,避免消費者權益因為演算法之偏見而受到歧視。是以,本法將高風險AI系統(High-risk Artificial Intelligence System)定義為「部署後作出關鍵決策(Consequential Decision)或在關鍵決策中起到重要作用的任何AI系統」。 而後,本法藉由要求AI系統開發者(Developers)與部署者(Deployers)遵守「透明度原則」與「禁止歧視原則」,來保護消費者免受演算法歧視。規定如下: (一)系統透明度: 1.開發者應向部署者或其他開發者提供該系統訓練所使用的資料、系統限制、預期用途、測試演算法歧視之文件以及其他風險評估文件。 2.部署者應向消費者揭露高風險人工智慧系統的預期用途,也應在高風險人工智慧系統做出決策之前向消費者提供聲明,聲明內容應該包含部署者之聯絡方式、該系統的基本介紹、部署者如何管理該系統可預見之風險等資訊。 (二)禁止歧視: 1.開發者應實施降低演算法歧視之措施,並應協助部署者理解高風險人工智慧系統。此外,開發者也應該持續測試與分析高風險人工智慧系統可能產生之演算法歧視風險。若開發者有意修改該系統,應將更新後的系統資訊更新於開發者網站,並須同步提供給部署者。 2.部署者應該實施風險管理計畫,該風險管理計畫應包含部署者用於識別、紀錄降低演算法歧視風險之措施與負責人員,且風險管理計畫應定期更新。在制定風險管理計畫時,必須參考美國商務部國家標準暨技術研究院(National Institute of Standards and Technology, NIST)的《人工智慧風險管理框架》(AI Risk Management Framework, AI RMF 2.0)與ISO/IEC 42001等風險管理文件。 美國普遍認為科羅拉多州的《人工智慧消費者保護法》為目前針對人工智慧系統最全面之監管法規,可作為其他州有關人工智慧法規的立法參考,美國各州立法情況與作法值得持續關注。
歐洲理事會提出糧食安全年度策略研究議程以整合歐盟研究能量為因應近年來人口增長、氣候變遷對糧食安全之威脅,歐洲各國皆認為糧食安全( Food Security)議題為亟待解決之議題,應投入資源研究。為此,2012年歐洲理事會(The European Council),始提出FACCE-JPI策略研究議程(The Strategic Research Agenda of the Joint Programming Initiative on Agriculture, Food Security and Climate Change),議程主要係針對歐洲農業、糧食安全和氣候變化進行整合研究。來自21個歐洲國家代表及研究學者,提出該年度糧食安全之重要觀察議題與發展方向,欲透過此議程建立研究資源整合機制,提高歐盟因應糧食生產挑戰之研究、應對能力。 歐洲理事會於去年(2012)12月提出本年度策略研究議程,內容除重申歐盟應整合糧食安全研究能量外,該議程更指出五大核心研究議題,反映歐盟對糧食安全威脅多元化之重視 ,本議程研究重點歸納如下: 1. 氣候變遷與糧食安全永續 2. 環境永續發展與農業精緻化 3. 糧食供需、生物多樣性與生態系統平衡 4. 氣候變遷之因應 5. 減緩氣候異常現象之有效措施 本議程以核心研究為理論基礎,有效整合各會員國研究能量,更針對各別領域提出具體實踐策略,藉以強化基礎溝通平台、建立歐洲知識訊息交換能力,便利後續評估、監測機制的建立。 策略議程取代傳統將糧食安全視為「國家內政」議題,而以「區域整合」層次處理,象徵歐盟糧食安全共識逐漸發展之趨勢。