美國於2015年2月5日公布修訂之行動醫療應用程式指導原則(Mobile Medical Applications, Guidance for Industry and Food and Drug Administration Staff),取代原先在2013年9月公布之版本。本次的修訂主要是將美國2015年2月9日公布之醫療設備資訊系統、醫療影像儲存設備、及醫療影像傳輸設備指導原則(Medical Device Data Systems, Medical Image Storage Devices, and Medical Image Communications Devices, Guidance for Industry and Food and Drug Administration Staff)規範納入其中。
2015年2月9日公布之醫療設備資訊系統、醫療影像儲存設備及醫療影像傳輸設備指導原則,擬降低FDA的管理程度,採用風險性評估方式,針對部分醫療設備資訊系統、醫療影像儲存設備及醫療影像傳輸設備等三種屬於第一級低風險之醫療器材,得不受ㄧ般管制,例如不需要登記、上市後報告及品質系統法規遵守等。原先,美國於2011年先將醫療設備資訊系統從第三級之高風險醫療器材,降低為第一級低風險之醫療器材,但經過長期間的使用經驗後,FDA認為,此等醫療器材設備在健康照護中十分重要,但相對於其他醫療器材,風險則較低,因此,將放寬程序。
行動健康應用程式亦可能歸類為上述之醫療器材,因此,為與上述的指導原則相符合,對於行動健康應用程式的審查亦作部分放寬。例如,當應用程式與資療資訊系統結合,而成為應受規範之醫療器材時,原先之規定為應進入醫療器材之規範程序,但新修訂之指導原則,則再放寬。僅將涉及積極的病人監測或醫療器材數據分析時,才需要回歸醫療器材之審查方式,其他醫療資訊系統若僅為儲存、傳輸等功能,而非主要提供診斷、治療等功能時,則可以不受醫療器材之規範限制,因風險程度較低,因此改由FDA視個案審查即可。為鼓勵相關產業的發展,FDA將風險性低之醫裁降低管理程度,其後續發展值得觀察。
委託研究開發之智慧財產治理運用指引(委託研究開発における知的財産マネジメントに関する運用ガイドライン,以下簡稱委託研發智財運用指引)為日本經濟產業省制定並於2015年5月15日公布,用於規範該省、或該省所轄獨立行政法人委外執行技術研發計畫而產出的各項智慧財產權之管理運用事宜。 日本於產業技術力強化法第19條納入拜杜法(Bayh-Dole Act)的意旨,建立了政府資助研發所生的智財權成果歸屬受託單位的原則,但同時為促進研發成果的第三人商業化利用,落實國家資助技術研發成果獲得充分運用以達成國家財富最大化的政策方針,因而作成該指引。 委託研發智財運用指引以委託機關和受託單位為規範對象,首先揭示了研發成果商業化利用的重要性,並以此為核心思維,賦予委託機關須就個別委外研發計畫,在計畫開始前訂定計畫智財權管理方針,並向潛在計畫參加者提示的義務,同時,委託機關須確保委託契約中包含智財權等成果管理運用之約款,例如針對成果有無適用日本拜杜法規定、受託單位承諾在相當期間內未妥善運用成果時開放第三人利用等;另一方面,受託單位則有義務就計畫設置智財營運委員會,負責在計畫執行期間處理智財權管理事宜。
日本內閣府公開徵集「研究安全和風險管理系統開發支援計畫」,加強研究安全保障日本內閣府公開徵集「研究安全和風險管理系統開發支援計畫」,加強研究安全保障 資訊工業策進會科技法律研究所 2025年03月10日 壹、事件摘要 內閣府科學技術創新推進事務局(科学技術・イノベーション推進事務局),於2025年2月19日發布公告,自2025年2月19日至3月24日公開徵集國內負責經濟安全重要技術的補助機關和研究機構加入「研究安全和風險管理系統開發支援計畫」 [1](研究セキュリティ・インテグリティに関するリスクマネジメント体制整備支援事業,下簡稱研究安全計畫),以加強研究安全之保障。 貳、重點說明 日本曾發生研究者在不知情的情形下與北韓研究者共著論文而危害研究安全事件,根據日本經濟新聞2024年11月28日報導,自2016年底北韓受到聯合國加強制裁以來,共有八篇北韓研究機構的國際共著論文發表,包含東京大學、名古屋大學等日本五所大學的研究者皆在共同著作者之列,雖研究者皆表示與北韓無聯繫,但此行為仍可能違反聯合國制裁規定,且一名涉及本事件的研究者在論文發表後,仍被任命為國內主導研究計畫的主持人,負責百億日圓預算及先進技術的管理,顯示日本研究安全管理問題[2]。 為避免類似事件發生及提升日本科技實力,以及配合G7國家關於研究安全與誠信的政策,內閣府公開徵集負責經濟安全重要技術的補助機關和研究機構加入研究安全計畫。該計畫將蒐集與分析國際合作研究所需的公開資訊,並整合後於2025年出版「研究安全與誠信程序手冊」(RS/RI に関する手順書)。 所謂經濟安全重要技術,係指《促進特定重要技術研發及適當運用成果基本指南》(特定重要技術の研究開発の促進及びその成果の適切な活用に関する基本指針)所列,包含AI、生物技術等先進技術領域[3],內閣府將透過此計畫驗證學研機構所實施之研究安全與誠信措施是否得宜,並與學研機構分享典範實務,參考政府制定的研究安全與誠信規範,提出分析與改善方法。 研究安全計畫將支援日本國內研究機構和其他處理對經濟安全重要技術的機關,在國內外開展聯合研究時採取必要的技術外流防止措施,一方面提供分析資源,如協助分析研究人員及研究機構的公開資訊(職業經歷、其他工作以及研究資金流向等),另一方面支援實施風險管理的相關費用,並針對整體防止技術外流的風險控管體系進行評估後給予建議[4]。 研究安全計畫參與對象為補助研發之機關及領取補助進行研究開發的機構(如公立研究機構、研究開發公司、大學等),且應有足夠能力執行完整風險控管計畫。另計畫評選期間,研究機構不得有內閣府所定停止補助、停止推薦等情形[5]。 內閣府為結合國家政策與國際標準,全面提升日本在經濟安全重要技術領域的研究安全與誠信管理能力,透過分析與資金支援,協助研究機構構建完善的風險控管體系,確保研究中的技術外流防範措施得以落實。此舉不僅為日本科技實力的長期發展奠定基石,亦為維護國家經濟安全及國際信譽提供堅實保障。 參、事件評析 近年研究安全成為國際間之重要議題,為防止技術外流,各國亦有許多政策,如美國國家科學基金會(National Science Foundation, NSF)啟動「保護美國研究生態系統社群 」[6](Safeguarding the Entire Community of the U.S. Research Ecosystem, SECURE)計畫,並成立 SECURE 中心;加拿大政府公告「三機構關於敏感技術研究和關注從屬性政策指南」[7](Tri agency guidance on the Policy on Sensitive Technology Research and Affiliations of Concern, STRAC Policy)等,在如此趨勢下,日本亦開始注重研究安全之保障。 日本內閣府此次推動研究安全計畫,顯示日本政府已深刻意識到研究安全議題的迫切性與重要性。隨著全球科技競爭日益激烈,國際間的技術交流與合作頻繁,但也伴隨著技術外流、竊取敏感研究資訊等風險。尤其是北韓等受國際制裁國家,可能透過隱匿身分或間接合作的方式,取得敏感資訊,對國際社會的安全構成潛在威脅。 日本政府推動研究安全計畫,透過提供分析資源、資金支援及風險控管體系的評估建議,協助研究機構建立完善的防範機制,期望透過以上防範機制,全面提升日本在研究安全管理能力,並確保技術外流防範措施得以落實。 然而,此計畫的推動仍存在一些挑戰與考量。首先,如何在確保研究安全與維護學術自由之間取得平衡,避免過度限制造成研究自主性與創新能力的損害,將是重要課題。此外,背景審查與資訊分析機制的建置,需注意個人隱私保護,避免引發研究人員的反彈與抵制。再者,國際合作研究的審查程序若過於繁瑣,也可能影響日本研究機構與國際間的合作意願,甚至對國際學術地位造成負面影響。 因此,日本政府在推動此項政策時,應積極參考美國、加拿大等國的經驗,建立透明且具彈性的管理制度,並與國際夥伴保持密切溝通,協調一致的研究安全標準,避免孤立於國際科研社群之外。綜上所述,日本此次行動對於提升國內研究安全與誠信管理能力,並維護國家經濟安全,具有正面且積極的意義,未來仍需持續關注政策推行的成效與後續調整方向,以達成長期穩健的發展目標。 [1]〈研究セキュリティ・インテグリティに関するリスクマネジメント体制整備支援事業の公募について〉,內閣府,https://www8.cao.go.jp/cstp/kokusaiteki/integrity/kobo_r7.html (最後瀏覽日:2025/3/10)。 [2]日本経済新聞,〈東大など5大学、知らずに北朝鮮と共同研究 「寝耳に水」〉, 20254/11/28,https://www.nikkei.com/article/DGXZQOUE293WI0Z20C24A1000000/ (最後瀏覽日:2025/3/10)。 [3]〈特定重要技術の研究開発の促進及びその成果の適切な活用に関する基本指針〉,內閣府,https://www.cao.go.jp/keizai_anzen_hosho/suishinhou/doc/kihonshishin3.pdf (最後瀏覽日:2025/3/10)。 [4]〈研究セキュリティ・インテグリティに関するリスクマネジメント体制整備支援事業公募要領〉,內閣府,頁3,https://www8.cao.go.jp/cstp/kokusaiteki/integrity/kobo_r7/kobo_r7.pdf (最後瀏覽日:2025/3/10)。 [5]同前註,頁4。 [6]NSF-backed SECURE Center will support research security, international collaboration, US National Science Foundation, https://www.nsf.gov/news/nsf-backed-secure-center-will-support-research (last visited Mar. 10, 2025). [7]Tri-agency guidance on the Policy on Sensitive Technology Research and Affiliations of Concern (STRAC Policy), Natural Sciences and Engineering Research Council of Canada, https://www.nserc-crsng.gc.ca/InterAgency-Interorganismes/RS-SR/strac-rtsap_eng.asp (last visited Mar. 10, 2025).
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。
初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵 資訊工業策進會科技法律研究所 2019年03月15日 壹、事件摘要 於2018年03月18日晚間10時許,美國亞利桑那州(Arizona,下稱Arizona)一名49歲的婦人,遭到配備Uber自動駕駛系統之車輛[1],在運行自動領航模式(Autopilot)下撞擊,雖然該婦人立即送往醫院,但仍回天乏術而在醫院中去世。就在前開事故發生後,Arizona州長Doug Ducey因此下令其暫停測試。[2] 此外,同年12月11日晚間10時許,在我國有一輛配備自動輔助駕駛功能的Tesla,疑似駕駛人精神不濟因而未能及時注意車前狀況,導致車禍發生,雖然肇責是否牽涉Tesla之自動輔助駕駛功能或駕駛人本身有無疲勞駕駛等情事,有待進一步釐清。[3] 綜上,不論測試或道路駕駛,現今社會已不乏具有一定自動駕駛等級之車輛於路上行駛,然而在推廣、研發或應用自動駕駛車輛(下稱自駕車)的同時,若不幸發生類似前開新聞之(車禍)事故時,相關肇事責任究應如何釐清,隨著我國已於2018年12月19日公布無人載具科技創新實驗條例以積極推動自駕車相關應用,更愈顯重要,為解決前開肇事相關疑慮,本文擬針對民事上之「過失」本質,反思自駕車相關應用可能延伸的事故責任,是否因應科技發展而有不同的過失內涵。 貳、重點說明 承上,面對自駕車相關科技與應用的世界洪流,若發生車禍等交通事故時,當事人相關之損害賠償請求,仍大多以民法上之侵權行為作為基礎,雖事故肇因種類眾多,亦常見各類的肇因共同造成事故發生,但本文考量相關議題繁複,以下僅就非依軌道行駛之自駕車、駕駛人過失內涵等框架下依序進行初探與反思: 一、我國侵權行為損害賠償係以行為人有無具抽象輕過失為斷 車禍之發生,若涉及駕駛人之行為者,受有不論財產或人身損害之人而欲請求賠償者,無論係依據民法第184條以下何條侵權行為之規定(即民法第184條第1項前段、同條項後段或第191條之2等規定),請求駕駛自駕車之人賠償,前提均為駕駛人具有過失,差別僅在舉證責任是否由請求權人(受有損害之人)負擔。 承上,既然前開侵權行為之重要成立要件為過失,其具體內容為則為駕駛人之注意義務應至何種程度,然在我國民事過失責任之架構上,有不同程度上之區分,即分別為抽象輕過失、具體輕過失及重大過失三種。申言之,抽象輕過失為欠缺應盡善良管理人之注意者義務;具體輕過失者為欠缺應與處理自己事務為同一注意者;重大過失者為顯然欠缺普通人之注意者[4]。 對此,實務見解[5]以及學者[6]歷來均認侵權行為之過失標準,應以行為人是否克盡客觀化之過失標準─抽象輕過失,倘否,則應負擔過失之賠償責任,是以,就此脈絡推論,自駕車之駕駛人若有違善良管理人注意義務致車禍發生且使他人受損害,即應負損害賠償責任。 二、駕駛人注意義務與自駕車自動駕駛程度間之互動 根據引領世界自駕車標準的領銜者─國際汽車工程師學會(Society of Automotive Engineers International,下稱SAE)所分類之自動化駕駛等級,區分為等級0至等級5(共6個等級),而等級3後之自駕車即開始逐漸將環境監控的任務從駕駛人移轉至車輛本身,而駕駛人僅在特殊條件下,方須接管駕駛車輛,更甚在等級5時是由自駕車在任何狀況下均可自行駕駛,不過在等級2前之等級,環境監控之任務大多在駕駛人身上,自駕車至多僅係協助運行駕駛人之指令[7]。 然而,自駕車駕駛人因車禍所生之侵權行為責任,誠如前述,係以駕駛人存有抽象輕過失作為前提,而過失之本質,則係雖非故意,但按其情節,(1)行為人(駕駛自駕車之人)應或能注意,卻不注意,或(2)雖可預見侵權行為(車禍肇事)之事實發生,但確信不發生[8],就此,在SAE分類等級2以前之自駕車,因監控環境之任務仍由駕駛人負擔,則該類等級自駕車之駕駛人應與一般車輛之駕駛人,負擔相同侵權行為之注意義務內容(或程度),但等級3至等級5自駕車之各式應用情境,車輛行駛環境之相關監控資訊已轉由車輛本身處理、控管,則駕駛人是否對於自駕車之車禍發生,仍具有可預見性,或得注意並防免之,則不無疑慮。 參、事件評析 綜上,本文所提不同等級自駕車,是否當然得以繼續適用傳統民事侵權行為之過失標準判斷駕駛人有無過失,實有相當程度上之衝突,蓋若自駕車之駕駛人對於行車環境資訊已不如駕駛一般車輛時,實難期待駕駛人對於車禍之發生有何預見可能,或在遇見後積極防免結果發生,倘若一概遵循傳統對車禍侵權行為之高注意義務要求─抽象輕過失責任,或將產生使不明瞭或難以預見該事故原因發生之人,卻必須就非因己誤之結果負責,某程度上似有違過失責任之本質,而質變成為無過失之擔保責任。 據此,本文認為,若要解決前開損害發生須有補償或賠償之問題,或可(1)透過保險、基金等方式填補損害,或(2)具體化等級3至等級5自駕車之駕駛人應負何等注意義務,如駕駛人須隨時處於得以接管車輛操作之狀態,使等級3以上之自駕車所應盡之注意義務與傳統侵權行為之注意義務脫鉤處理(3)與商品責任間進行相關的調和等,然而無論如何,對於此等問題或疑慮,究竟應採何方向或多方進行,甚或以其他方式解決,則有待後續更進一步的討論與分析。 [1] Uber於該州進行自動駕駛車輛之測試。 [2] ADOT director's letter to Uber halting autonomous vehicle tests, ADOT, https://www.azdot.gov/media/News/news-release/2018/03/27/adot-director's-letter-to-uber-halting-autonomous-vehicle-tests (last visited Mar. 21, 2019); Ryan Randazzo, Arizona Gov. Doug Ducey suspends testing of Uber selfdriving cars, azcentral, Mar. 26, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/26/doug-ducey-uber-self-driving-cars-program-suspended-arizona/460915002/ (last visited Mar. 21, 2019); Ryan Randazzo, Bree Burkitt & Uriel J. Garcia, Self-driving Uber vehicle strikes, kills 49-year-old woman in Tempe, azcentral, Mar. 19, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/19/woman-dies-fatal-hit-strikes-self-driving-uber-crossing-road-tempe/438256002/ (last visited Mar. 21, 2019). [3] 蘋果日報,〈台灣首例!特斯拉自動駕駛闖禍 國道上撞毀警車〉,2018/12/12,https://tw.appledaily.com/new/realtime/20181212/1482416/ (最後瀏覽日:2019/03/21)。 [4] 96年台上字第1649號判決。 [5] 19年上字第2476號判例。 [6] 王澤鑑,《侵權行為法》,自版,頁308-309(2011)。 [7] SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles, SAE International, https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (last visited Mar. 22, 2019). [8] 97年度台上字第864號判決。