淺談創新應用服務(OTT)之創新與規範課題
科技法律研究所
法律研究員 蔡博坤
2015年05月26日
隨著資通訊科技快速的發展,例如網際網路、雲端運算、智慧聯網、巨量資料、4G/5G等等,創新應用服務(Over-the-top, OTT)已逐漸包含各種基於網際網路之服務與內容。此科技應用的服務應如何在現行法律規範體系下被論及,其本身以及衍生的議題復為何,均為所欲介紹的核心,本文係以美國作為觀察之對象,希冀對於我國未來在OTT領域之法制有所助益。
壹、美國FCC對於創新應用服務(OTT)的態度觀察
在美國,聯邦通訊委員會(Federal Communication Commission, FCC)係美國境內主管電信與通訊領域聯邦層級的主管機關,對於網際網路上之新興應用服務,為鼓勵新興技術的發展,一向以避免管制為原則,也因此一些OTT TV或VoIP之商業模式,近年來無論係在美國境內抑或境外,皆有著長足的發展。另一方面,隨著科技快速變遷,FCC亦與時俱進持續透過公眾諮詢,尋求是否有調整相關定義,抑或擴張規範管制之必要。例如,2014年12月,FCC發布一個法規修訂公開意見徵集的通知(Notice of Proposed Rulemaking, NPRM),希冀更新目前於1934年通訊法(Communications Act of 1934)下之相關規範,以反映目前透過網際網路所提供的影音服務,特別將更新對於Multichannel Video Programming Distributor(MVPD)一詞定義。
貳、關鍵之法制課題
由於FCC在創新應用服務(OTT)領域市場管制者(market regulator)的角色乃至關重要,同時,提供此應用服務的業者,無論係電信業者還是新興科技業者,其彼此間相互且複雜之法律關係,所衍生之法制議題,實有必要探討以及釐清,謹就兩個層面的問題概述如下:
關於第一個層次網路中立(Net Neutrality)的議題,從相關案例實務判決觀察,2014年2月,美國有線寬頻業者Comcast即以頻寬有限資源,以及確保網路流量充足的理由,說服Netflix服務營運商,同意因此付費給Comcast,而雙方所進行之合作,也引起所謂網路中立性的爭議課題。今(2015)年2月,FCC於最新通過的Open Internet Order,有別於過往命令僅能有限度地適用於行動網路服務業者(mobile broadband),新的命令將能全面性地適用於固網以及行動網路業者,反應近年來在無線寬頻網路科技之快速進展,將擴張保護消費者近取網際網路的方式。
其次,觀察目前美國境內OTT的業者,包括Now TV、Netflix、Ditto TV、Whereever TV、Hulu、Emagine、myTV等,均有建置整合平台,俾利提供消費者新型態的商業服務,從知名Netflix公司所建構的平台政策,相關重要的規範課題包含資料的蒐集、處理與利用,也提到對於安全性的重視與兒少保護等。在相關隱私權議題面向,其指出,由於使用者得通過不同的媒介透過網際網路近取相關服務,誠是些來源皆有各自獨立之隱私權聲明、注意事項與使用規約,除了提醒用戶應盡相關的注意義務外,相關衍生的責任亦會予以劃清。
參、簡評
從上述可得知,創新應用服務(OTT)整體之發展,係與網際網路(Internet)相關推動工作係一體的,因此,我國未來如欲推動OTT相關創新服務,相關網際網路所衍生的議題,例如網路中立等,勢必將成為重要的法制層面所亟需探究之課題。
在我國,如同美國聯邦通訊委員會(FCC)角色之行政主管機關係國家通訊傳播委員會(NCC),在主管的法令中,目前依據電信法相關規範,電信事業應公平提供服務,除另有規定外,不得為差別處理(第21條);無正當理由,第一類電信事業市場主導者不得對其他電信事業或用戶給予差別待遇,抑或不得為其他濫用市場地位或經主管機關認定之不公平競爭行為(第26-1條)。
相關法律條文規範是否可因此援引作為討論創新應用服務(OTT)之法源基礎,復如何調和第一類電信事業市場主導者與新興應用服務科技業者之關係,仍存在著灰色地帶。從鼓勵產業創新之觀點出發,謹初步建議從正面的立場,鼓勵相關創新應用發展,宜避免逕就OTT服務過度管制。
資料利用之層面越來越廣,且無論是基於商業或公益目的,產生越來越多難題。穿戴式裝置及物聯網的發展,亦使得資料之蒐集利用及界線等問題更顯其重要性。有鑑於此,大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「倫敦城市資料策略」(London City Data Strategy),積極推動「城市資料市集」(City Data Market),期將倫敦打造成世界首屈一指的智慧城市。 增加大眾對資料市集之信賴並減少疑慮乃「倫敦城市資料策略」之一環,近年在英國有一系列新法上路,除新的歐盟資料保護規範(GDPR)外,英國國內有關「開放銀行」(open banking)之新規範,以及已有能源及電信公司參與之MiData initiative等,上述機制均為促使個人更容易掌握其個資被利用之狀況。 大倫敦政府亦推動「倫敦資料交易」(London Data Exchange),大眾可利用此一機制掌握其個資流向。其中有關建置新的數位符號(digital tokens of proof),使民眾未來可利用此等符號證明符合特定資格,例如在道路受檢時,毋須拿出駕照說明個人姓名、地址、出生年月日等資料,利用該等符號,便可判定符合駕駛年齡。 近期,大倫敦政府透過資料科學合作夥伴(Data Science Partnership)推動資料科學倫理架構(Framework for Data Science Ethics),著手研究民眾對資料交易新機制的反應,試圖在資料利用與法律和道德問題間尋求平衡。
英國不贊同歐盟新視聽媒體服務指令英國傳播、電信、科技及媒體相關領域業者及團體於 2006 年 4 月聯合發表一份意見書,反對歐盟提出的新視聽媒體服務指令( Audiovisual Media Services Directive )草案。同時英國政府也正關注這項草案並與其他會員國進行討論。 自 2005 年 9 月起,歐盟開始針對電視無國界指令( Television without Frontiers Directive )的修正進行討論。歐盟考慮將該指令修改為視聽媒體服務指令,擴大其規範範圍,使其包括各種與電視相似( TV-like )的服務,並將所有視聽媒體服務區分成線性( linear )及非線性( no-linear )服務,分別給予不同程度的管制。 不過英國有許多業者及團體對於這項新指令的制訂深表不贊同,其認為: (1) 就非線性服務(例如隨選視訊)而言,目前既有法規以及業者自律規範已足以保障消費者; (2) 線性及非線性的分類方式可能不適宜作為法律定義的基礎; (3) 新指令將可能阻礙新進業者參與市場的意願,甚至導致投資者轉向其他國家發展。所以希望透過連署,要求歐盟重新檢視這項新指令。
澳洲證券投資委員會與美國商品期貨交易委員會簽訂雙邊合作協議2018年10月4日,澳洲證券投資委員會(Australian Securities and Investments Commission,簡稱:ASIC)與美國商品期貨交易委員會(US Commodity Futures Trading Commission,簡稱:CFTC)簽訂「金融技術創新合作雙邊協議」(Cooperation Arrangement on Financial Technology Innovation’ bilateral agreement,簡稱:協議),該協議內容主要針對未來金融科技(fintech)以及監理科技(regtech)之合作以及相關資訊作交換。 協議內容主要為加強雙方瞭解、識別市場發展趨勢,進而促進金融科技創新,對於運用監理科技之金融產業採取鼓勵的態度。 具體協議內容及相關合作計畫為以下條款: 1. 建立正式合作途徑,其中包含資訊分享,ASIC創新中心與LabCFTC之間的溝通; 2. 協助轉介有興趣於另一管轄權,設立企業之金融科技公司; 3. 促進監管機構定期舉行相關監管會議,討論目前時下發展趨勢,藉以相互學習; 4. 針對非公開資訊及機密資訊,給予監管機構以共享方式流通資訊。 儘管,澳洲與美國已簽訂此協議,惟須注意的地方在於,此協議本質上不具備法律約束力,對監管機構也未加註責任,並強加特定義務,以及未取代任何國內法的法律義務。 雖然,此協議不具任何法律約束力,但美國以及澳洲之金融科技創新產業間已形成一定之默契,以及交叉合作。此種互利合作,使兩國金融創新企業在雙方管轄權下,並且降低跨境成本及加深跨境無障礙性,為兩國監管機構提供最佳執行方式,以及進一步資料之蒐集。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。