為因應2016年正式上路實施之社會保障與納稅人識別號碼制度(社会保障・税番号制度)對於個人資料保護所產生之影響,日本政府內閣於2015年3月10日於國會提出個人情報保護法之修正案。
此次修正案主要分有六大重點,包含個資定義擴充與明確化、確保個資文件內容之正確性、強化個資保護規範內容、設立個人情報保護委員會、個資情報處理全球化,以及其他修正事項如未得當事人同意之第三人使用個資條件嚴格化等。
其中主要有兩項係與社會保障與納稅人識別號碼制度相關。首先是強化個資保護規範內容部分,由於社會保障與納稅人識別號碼制度將遇有個資資料庫使用情況,故新增個資資料庫之相關規範與罰則,行為人於未經授權或不當使用個資資料庫時,將可處1年以下拘役併科日幣50萬元以下之罰金,亦即當行為人違反個資法有關個資資料庫規定時,不但須支付罰金也須負刑事責任。
其次,擬設立直屬內閣總理大臣所轄之個人情報保護委員會,其委員組成人選須經參眾兩議院同意後,由內閣總理大臣任命之。委員會主要任務在於專責監督與監測政府各機關以及民間個資處理事業對於個資的傳遞、處理,並適時提出指導意見或建言。
2015年6月美國聯邦最高法院大法官以6比3的同意比例判決維持該法院於1964年所確立之Brulotte原則,即專利失效後禁止要求償付授權金之原則。聯邦最高法院重新檢討Brulotte原則之爭議係起源於Kimble et al. v. Marvel Enterprises Inc.(case num. 13-720)一案。該案中涉及到現實下專利權利人於面對財團時,是否能於專利權有效期間採取手段充分保護專利權之問題,故是否有必要放寬專利權於失效後,專利權人仍得以專利授權契約要求專利被授權人償付授權金。又本案原告知專利發明人Kimble主張放寬Brulotte原則亦有亦於刺激競爭,促進研發創新。 然而,主撰判決本文之美國卡根大法官(Justice Kagan)及贊同維持Brulotte原則之大法官認為,Brulotte原則屬於聯邦最高法院遵照執行之決議事項(stare decisis),必須具有超級特別的理由(superspecial justification)才足以立論推翻該原則。但大法官認為並無有該類理由,並且強調縱然放寬Brulotte原則在學理上證實有助於市場競爭,但這也並非聯邦最高法院在司法權限所應審查或判斷之事項,而應是美國國會於智財政策之取捨。 反對維持Brulotte原則之阿利托大法官(Justice Alito)、羅伯特首席大法官(Chief Justice Roberts)及湯瑪斯大法官(Justice Thomas)提出不同意見書。反對意見認為專利失效及失去任何專有權利,所以涉及授權金之唯一問題即在於最佳契約設計(optimal contract design)。Brulotte原則干預了各方協議授權內容時,可以反映專利真實價值的方式,破壞契約期望(contractual expectation)。 本案作成判決後,各專利事務所及專利律師普遍贊同聯邦法院維持Brulotte原則,主要係基於該原則可以使用來償付授權金之資金轉為用於他處,有助於資金流通,而非用於已失效之專利。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
歐盟發佈關於監督金融業之數據保護準則歐洲數據保護監督組織(European Data Protection Supervipsor,EDPS)發表「關於在歐盟監督金融業之數據保護準則」(Guidelines on Data Protection for Financial Services Regulation),以作為確保歐盟的數據保護規範,將被整合進正在發展中的金融政策與相關規定之實用工具。該準則為金融市場監督機制的一部分,在金融業對個人資料的處理上,特別是透過監控、記錄保留、回報、以及資訊交換這些存有侵犯個人資料和隱私權風險的措施予以規範。 該準則包含10項步驟與建議,旨在協助歐盟後續金融監督政策的制定,其中一些重要的建議如下: (1)應評估資訊之處理是否可能妨礙隱私權。 (2)應為數據的處理建立法律基礎。 (3)評估適當的資訊保留期限並給予正當化依據。 (4)建立個人資料傳輸至歐盟外的正當法律依據。 (5)提供個人資料保護權利的適當保障。 (6)衡量適當的數據安全保護措施。 (7)應為數據處理的監督提供特定之程序。 有鑒於2008年金融危機的影響,該準則透過提供一個能確保個人資料被妥善保護的有效方法,期以重建金融市場的信心。Giovani Buttarelli,作為新任歐洲數據保護監督委員,在一份伴隨準則釋出的聲明稿當中表示:「個人資料的價值已經隨著數位經濟的成長不斷增加,確保各行業的個人資料得以受到保護也益顯重要。歐洲數據保護監督組織(EDPS)計畫對不同行業制定相關保護規範,此準則是第一個發佈的。」
新加坡金融管理局發布穩定幣監管架構,以降低金融風險新加坡金融管理局(Monetary Authority of Singapore, MAS)於2023年8月15日發布穩定幣監管架構,旨在維持金融穩定發展,並將與新加坡幣或十大工業國(G10)貨幣掛勾之單一貨幣穩定幣(single-currency stablecoins, SCS)納入監管,確保穩定幣的安全可靠。符合監管規範之穩定幣發行人,可向MAS申請標註為「MAS監管之穩定幣(MAS-regulated stablecoins)」,有助於區分其他不受政府監管之數位支付代幣(digital payment tokens),以保障穩定幣持有人權益及降低金融穩定之潛在風險。 依據本監管架構,穩定幣發行人需遵循的監管要求包括:(1)價值穩定性,穩定幣儲備資產須遵守其構成、估值、託管與審計方面的要求,以維持價值穩定性;(2)資本,發行人必須維持最低資本與流動資產,以降低破產風險;(3)贖回,持有人可在發行人收到贖回請求後5個工作天內,以穩定幣面值贖回;(4)資訊揭露,發行人必須向持有人揭露相關重要資訊,包括有關穩定幣價值穩定機制、穩定幣持有人權利以及儲備資產審計結果等資訊。MAS表示,穩定幣若受到適當監理,維持價值穩定,將可成為可信賴的數位交易媒介,開創更多創新的金融科技應用,促進金融穩健發展。