德國與愛爾蘭對於個人資料處理是否須明示同意之見解不同

  德國與愛爾蘭資料保護局對於資料保護指令所規定個人資料(以下簡稱個資)的處理(process),是否須取得資料當事人明示同意,表示不同的見解。德國資料保護局認為臉書網站所提供之人臉辨識(預設加入)選擇退出(opt out consent)的設定,並不符合資料保護指令(Data Protection Directive)對於同意(consent)的規範,且有違資訊自主權(self-determination);然而,愛爾蘭資料保護局則認為選擇退出的機制並未牴觸資料保護指令。

  德國資料保護局委員Johannes Caspar教授表示,預設同意蒐集、使用與揭露,再讓資料當事人可選擇取消預設的作法,其實已經違反資訊自主權(self-determination)。並主張當以當事人同意作為個人資料處理之法律依據時,必須取得資料當事人對其個資處理(processing)之明示同意(explicit consent)。對於部長理事會(Council of Ministers)認同倘資料當事人未表達歧見(unambiguous),則企業或組織即可處理其個人資料的見解,Caspar教授亦無法予以苟同。他認為部長理事會的建議,不但與目前正在修訂的歐盟資料保護規則草案不符,更是有違現行個資保護指令的規定。

  有學者認為「同意」一詞雖然不是非常抽象的法律概念,但也不是絕對客觀的概念,尤其是將「同意」單獨分開來看的時候,結果可能不太一樣;對於「同意」的理解,可能受到其他因素,特別文化和社會整體,的影響,上述德國和愛爾蘭資料保護局之意見分歧即為最好案例。

  對於同意(consent)的落實是否總是須由資料當事人之明示同意,為近來資料保護規則草案(The Proposed EU General Data Protection Regulation)增修時受熱烈討論的核心議題。資料保護規則草案即將成為歐盟會員國一致適用的規則,應減少分歧,然而對於企業來說,仍需要正視即將實施的規則有解釋不一致的情況,這也是目前討論資料保護規則草案時所面臨的難題之一。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 德國與愛爾蘭對於個人資料處理是否須明示同意之見解不同, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=6901&no=57&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
對AI下達複雜、反復修改指令不算創作行為? —美國著作權局發布AI著作權報告第2部分:可受著作權保護性

.Pindent{text-indent: 2em;} .Noindent{margin-left: 22px;} .NoPindent{text-indent: 2em; margin-left: 38px;} .No2indent{margin-left: 54px;} .No2Pindent{text-indent: 2em; margin-left: 54px} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 對AI下達複雜、反復修改指令不算創作行為? —美國著作權局發布AI著作權報告第2部分:可受著作權保護性 資訊工業策進會科技法律研究所 2025年02月10日 由於生成式AI是根據使用者輸入的提示或稱指令(prompts),依機率分布推算生成出最有可能出現的結果,因此有人戲稱AI在每次生成時都是在隨機進行「擲骰子」,即便相同的提示也可能會得到有差異的輸出結果。為應對AI回應的不確定性和多樣性,如何下達提示,有效使用AI,為必須學習的課題。因此,有人說訓練不了人工智慧?我們可以訓練自己,但用心思考精準有效指令,費心對AI生成結果進行反復修改,就能取得著作權保護嗎?美國著作權局提出的看法,或許與大家的期待不同。 壹、事件摘要 美國著作權局今(2025)年1月發布AI著作權報告的「第2部分:可受著作權保護性(Part 2: Copyrightability)」[1]。為幫助評估AI著作領域的立法或監管措施是否必要,該局於2023年8月即發布「著作權與人工智慧議題徵詢通知(Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence)」,對外尋求對包括涉及使用受著作權保護的作品來訓練AI模型的問題、適當的透明度與揭露程度受著作權保護的作品的使用以及AI生成內容的法律定位等問題的意見[2]。在分析AI引發的著作權法與政策問題的意見徵詢結果後,美國著作權局於2024年7月31日,以數位複製物(digital replicas)主題,發布「著作權與人工智慧分析人工智慧引發的著作權法和政策議題」(Copyright and Artificial Intelligence analyzes copyright law and policy issues raised by artificial intelligence)報告的第1部分[3],並隨後於今(2025)年1月發布報告的「第2部分:可受著作權保護性(Part 2: Copyrightability)」[4]。 此報告指出現有的法律原則可根據個案判斷是否具有足夠的人為貢獻,有足夠的彈性足以解決關於AI生成內容是否具有著作權的問題,並不需要修法;當人工智慧被用作工具,且人類能夠決定作品的表達元素時,對AI生成結果的創意選擇、協調或安排,以及對生成結果的創意修改,都可獲得著作權保護;但目前使用者即使給予AI詳細的提示,也無法控制AI如何生成內容,不足以使其成為「作者」;著作保護仍須以人為創意投入,既有法令已足以激勵AI發展,沒有理由為AI生成的內容提供額外的著作權或特殊權利保護。 貳、重點說明 一、AI系統的輸出存在不可控制性[5] 當前生成式AI系統的輸出可能包括未指定的內容,在有數十億個參數的模型構建的複雜AI系統下,特定提示或其他輸入對於AI生成內容的影響存在不確定性,即使是專家研究人員在理解或預測特定模型行為的能力方面也受到限制。不僅AI生成的內容會因請求而異,而且即使具有相同的提示也是難以預測的,即使有AI系統例如Midjourney允許使用者控制生成一致的結果,在重複相同的提示時收到幾乎相同的圖像,然而即使如此也無法保證完美的一致性。 二、有辛勤努力、指示建議不等於有創造性貢獻 (一)無法僅因時間和努力而獲得著作權保護,它需要原創性 (originality),無論原創性有多麼低微 美國的著作權保護限於人類的創作(human authorship) 沒有任何法院承認非人類創造(non-human creation)的著作權。當然在使用AI的大多數情況下,人類將參與創作過程(creation process),並且在他們的貢獻符合創作資格的範圍時,能使其作品具有著作權。美國上訴法院(Supreme Court)明確表示,需要的是原創性 (originality),而不僅僅是時間和努力。在「Feist Publications, Inc. v. Rural Telephone Service Co.」案中,法院否定僅憑「血汗」(sweat of the brow)就足以獲得著作權保護的主張,但法院也認為絕大多數作品都很容易達到標準,因為所需的創造力水平極低;即使是很小的量、無論多麼粗糙、卑微或顯而易見都無妨(no matter how crude, humble or obvious’ it might be.)[6]。 (二)使用機器作為工具並不會否定著作權保護,如果作品已包含足夠的人類創作表達元素(human-authored expressive elements) 對於AI工具的使用是否影響著作權保護,美國著作權局提及在「Burrow-Giles Lithographic Co. v. Sarony」案中,法院將「作者」定義為「任何事物起源的人、創始人、製造者、完成科學或文學作品的人。(he to whom anything owes its origin; originator; maker; one who completes a work of science or literature.)」。法院確定了即使是使用照相機,攝影師也有許多創造性貢獻,包括將主題置於相機前,選擇和安排服裝、窗簾與其他各種配件、安排主題以呈現優雅的輪廓,以及喚起其所需的表情[7]。因此能否受保護的重點不在於有無使用工具,而是創造性投入的有無。 (三)「作者」必須是實際創作作品,即將想法轉化為有形呈現的表達的人,不包括只是提供詳細的建議和指示或做無實質改變轉換的人 美國著作權局在報告中指出,上訴法院在「Community for Creative Non-Violence v. Reid, "CCNV"」案中,認為:繪製設計草圖和以有形的表達媒介實現創意,使藝術家成為作者。該案的哥倫比亞特區巡迴法院明確表示,委託雕塑並提供詳細的建議與指示是不夠的,因為此類貢獻構成不受保護的想法,其不能因此成為雕塑的共同作者。而第三巡迴上訴法院在「Andrien v. Southern Ocean County Chamber of Commerce」案中, 認為原告「明確指示了副本的準備工作的具體細節」,因此「編譯只需要簡單的轉錄即可實現最終的有形形式」。因為印刷商「沒有實質改變原告的原始表達(original expression)」,法院裁定原告是「作者」[8]。 因此,該局認為儘管人工智慧生成內容不能被視為使用者與人工智慧系統的共同作品(joint work),但對於是否貢獻足夠的表達以被視為作者,提供有用的類比—僅僅向作者(AI)描述委託作品應該做什麼或看起來像什麼的人,並不是著作權法意義上的共同作者。 三、AI的創作輔助使用 美國著作權局同意,使用人工智慧作為輔助創作作品的工具與使用人工智慧作為人類創造力的替代品之間存在重要區別。雖然增強人類表達的輔助使用不會限制著作權保護,但認為需要進一步分析下列三種使用方式的差異: (1)指示人工智慧系統產生輸出的提示(prompts); (2)可以在人工智慧生成內容中感知到的表達性輸入(expressive inputs) (3)對人工智慧生成內容進行修改或安排(modifications or arrangements)。 (一)指示人工智慧系統產生輸出的提示(prompts) 由於欠缺對生成結果的控制能力,使用者即使輸入複雜的提示指令亦無法讓其成為「作者」[9]。提示本質上是傳達不受保護的思想,雖然高度詳細的提示可以包含使用者所需的表達元素,但目前的AI技術無法僅靠提示即能給予使用者足夠的人工控制,所以AI 系統的使用者無法成為生成內容的「作者」。雖然在輸入提示可以被視為類似於向受委託創作的藝術家提供指導,但在人與人之間的合作,委託者能夠監督、指導與理解受委託的人類藝術家的貢獻,但這情況目前不存在於人與AI的合作。或許將來可允許使用者對AI的生成內容取得完全的控制權,讓AI的貢獻變成固定或機械化(rote or mechanical)。 由於提示與結果輸出之間的差距,以及相同的提示可以生成多個不同生成內容的事實,進一步表明使用者缺乏對將他們想法轉換為固定表達的控制。而反覆修改提示不會改變、也無法為取得著作權提供足夠的依據,因為著作權保護的是作者身份,而不是辛勤工作。而且美國著作權局認為輸入修改後的提示與輸入單個提示在作用上似乎沒有實質性區別,對過程的控制程度都沒有改變。 不過,有些評論意見舉自然攝影作品做類比,認為即使攝影家無法控制野生動物何時進入畫面,這些作品也可能有資格獲得著作權保護。但美國著作權局認為,這與AI生成不同—攝影家的創作過程並沒有結束於他對作品的想法,其在照相機中控制角度、位置、速度和曝光的選擇,且可能進行作品的後製調修。該局指出「從(AI系統)提供的選項(生成結果)中進行選擇」不能被視為受著作權保護的作者身份, 因為「單一輸出的選擇本身並不是一種創造性的行為」。但該局也表示有時提示可以充分控制AI生成內容中的表達元素,如果AI技術進一步為使用者提供表達元素的更多控制,則結論可能會不同。 (二)富有表現力的輸入(Expressive Inputs)[10]與純粹指令不同 目前AI 系統接受以文本、圖像、音訊、視頻或這些內容形式的輸入,而可以將輸入保留成生成內容的一部分,例如修改或翻譯受著作權保護的作品。這類型的輸入,雖然亦可視為不同形式的提示,但與僅僅是傳達預期結果的提示不同。它所給的不僅是一個概念,更重要的是它限制了AI生成內容的「自主性」。因此可能提供了「更具說服力的人工干預」,而不是簡單的「將提示應用於未知的起點」。美國著作權局認為一個人輸入自己受著作權保護的作品,如果該作品在生成的內容中是可察覺的(perceptible),那麼他至少是該部分生成內容的「作者」。此類 AI 生成輸出的著作權將涵蓋可察覺的人類表達,包括可能涵蓋到作者對作品素材(material)的選擇、協調和安排。 (三)修改或安排(Arranging)AI生成的內容仍可受保護[11] 美國著作權局於報告中指出,使用 AI 生成內容通常是一個初始或中間步驟,如同其AI 註冊指引的說明—「人類可以以足夠創造性的方式選擇或安排 AI 生成的內容,以使最終作品整體構成一個作者的原創作品(the resulting work as a whole constitutes an original work of authorship)」。人類可以藉由修改AI生成的內容,使其達到符合著作權保護標準的程度,如果人類作者以創造性的方式選擇、協調和安排 AI 生成的內容,應該能夠主張著作權。例如:Midjourney 提供「Vary Region and Remix Prompting」,允許使用者使用提示來指定生成圖像的區域。美國著作權局認為此類可以讓使用者控制各個創意元素的選擇與放置的修改,是否達到最低原創性標準雖將取決於具體個案情況。但其認為就生成的內容位置可控制的案例,與純粹提示(prompts alone)情況不同,生成的內容應該受著作權保護。 參、事件評析 在美國著作權局公布其該報告之後,有網路媒體[12]以「美國著作權局定調:光靠提示詞的純AI生成圖片無法享有著作權保護,無論你下多複雜的提示詞都沒有」的標題,詮釋該報告的主旨。確實美國著作權局於該報告中,特別指出下達複雜與反復的提示,並不會影響著作權保護的取得與否的判斷。但關鍵點不在於提示本身,而是對AI生成結果的「可控制」(或可說是AI對生成結果的自主)程度。 對於AI生成結果的著作權保護,經濟部智慧財產局曾以電子郵件1070420號函指出:「著作必須係以自然人或法人為權利義務主體的情形下,其所為的創作始有可能受到著作權的保護。據了解,AI(人工智慧)是指由人類製造出來的機器所表現出來的智慧成果,由於AI並非自然人或法人,其創作完成之智慧成果,非屬著作權法保護的著作,原則上無法享有著作權。但若其實驗成果係由自然人或法人具有創作的參與,機器人分析僅是『單純機械式的被操作』,則該成果之表達的著作權由該自然人或法人享有。」,但何謂「單純機械式的被操作」?以複雜與反復的提示再擇取AI符合所需的AI修改結果,是否屬之?在目前AI工具朝向「自動化」發展的趨勢下,使用者下達提示後,多只須被動的對單一的生成結果,決定是否接受或重新下達指令,使用者只是以指令提出需求,實際的「創作行為」主體其實是AI而非人類。因此,美國著作權局於此報告中更進一步的說明使用者即使有複雜與反復的提示且有意的選擇特定結果,並不能就認定為「對結果有控制權」的創作。必須其結果可為使用者主導、控制,而非被動決定是否接受。 相對而言,在創作的保護實務上,美國著作權局告訴我們的是,人類仍然可以藉由在使用過程提高對AI生成結果的控制程度,以及生成內容的後製,使結果符合著作權保護標準。AI使用者應該盡量使用有提供具體修改控制功能的AI工具,只要有人為的事後修改,或使用過程中能具體主導AI生成的結果,我們仍然可以透過複雜與反復的提示AI,取得受著作權保護的生成結果。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 2: Copyrightability, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-2-Copyrightability-Report.pdf [2]US Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last visited Feb. 10, 2025). [3]US Copyright Office, Copyright Office Releases Part 1 of Artificial Intelligence Report, Recommends Federal Digital Replica Law, https://www.copyright.gov/newsnet/2024/1048.html (last visited Feb. 10, 2025). [4]U.S. Copyright Office Copyright and Artificial Intelligence, supra note 1. [5]詳前註1,頁5~7。 [6]詳註1,頁8。 [7]詳註1,頁9。 [8]詳註1,頁9。 [9]詳註1,頁18~21。 [10]詳註1,頁22~24。 [11]詳註1,頁24~27。 [12]電腦王,美國著作權局定調:光靠提示詞的純AI生成圖片無法享有著作權保護,無論你下多複雜的提示詞都沒有,https://www.techbang.com/posts/121184-the-us-copyright-office-has-set-the-tone-that-purely(最後瀏覽日:2025/02/10)。

何謂公共出借權(Public Lending Right;PLR )?

  隨著科技及網際網路的普及,扮演著知識保存及傳遞角色的圖書館,在近幾年來因應讀者的需求,逐漸朝向數位化邁進。提供數位化服務對於圖書館的使用者來說,可降低資料蒐集的時間成本。然而,對於著作創作人而言,圖書館若提供數位化服務,可能會造成整個著作市場的失序,著作權人無法由著作市場取得著作權法所賦予的相當報酬,同時因應數位時代來臨所衍生的電子資料庫業者的生存空間亦大幅被壓縮。目前已有28個國家立法承認著作人的租借權,對於圖書館出借館藏造成著作權人的損失,採取補償制度,即賦予著作權人「公共出借權」(Public Lending Right;PLR),對於著作權人因為圖書館出借館藏所可能的損失,予以一定額度的補償,而歐盟亦正醞釀推行統一的出借權制度。依據法源的不同,PLR在實施上會有不同的做法。目前已實行PLR的28國,其立法基礎大致可分為三類:(1) 根據著作權法中租借權的授權,如德國、澳洲;(2) 根據著作權法外的補償權,如英國;(3) 或是透過地方文化機構的補助。   所謂「公共出借權」或稱「公共借閱權」乃指圖書或其他媒體資料,透過圖書館出借給讀者,而衍生政府以補償金或酬金支給作家的一種權利,是一種權利補償金制度。這個制度經濟上的假設是圖書館的出借行為會對於著作在市場上的銷售產生不利的影響,從而減損了著作權人的收入。但因為圖書館出借圖書乃是整個著作權法促進文化發展下所必須的一環,因此,對於著作權人的特別犧牲加以補償。從文化政策的角度來看,是屬於國家對文化創造者所實施的保護與獎勵措施。而基於圖書館對社會大眾提供免費服務的信念,實施公共出借權的國家,皆以政府經費或另設基金的方式來運作,並未直接向圖書館使用者要求收費,也並非以圖書館經費來支應給予作者的報酬。

從新一期發布之強化農業生產基礎計畫談日本智慧農業推動策略

從新一期發布之強化農業生產基礎計畫談日本智慧農業推動策略 資訊工業策進會科技法律研究所 劉宥妤 副法律研究員 2020年11月13日 壹、日本內閣推動智慧農業政策之演進   日本內閣推動智慧農業相關政策,促使農林漁畜業及地方發展,首現於2013年「農林水產業地域活力創造計畫」(以下簡稱活力創造計畫)[1],計畫指出日本預計透過活用機器人技術與農業ICT(資通訊技術),實現超省力、高品質生產的新農業,設置研究會以規劃智慧農業未來藍圖、確保機器人技術安全性政策等,促進高等栽培技術知識外顯化,推動開發生產管理與農業經營指導等系統。活力創造計畫係由日本內閣設置之農林水產業地域活力創造本部[2](以下簡稱活力創造本部)發布,活力創造本部由內閣首相擔任本部長,內閣官房長官、農林水產大臣擔任副本部長以及相關閣僚參與。   日本政府隨後於2016年、2019年發布「農業競爭力強化計畫」與「農業生產基礎強化計畫」,這些計畫與智慧農業推動也都息息相關。此揭係針對該時期農業領域待解決之議題提出相對應的強化政策,並將這些計畫統整歸納進活力創造計畫,做為推動農業整體性發展之政府最高指標。   2016 年 11 月29日活力創造本部公布「農業競爭力強化計畫」,主要目的為整備農業經營環境,使農民得以自由展開經營的環境,同時解決僅靠農民努力無法解決的結構性問題。計畫分為四個面向,包括:一、整頓農業上下游產業;、改善人力與土地;三、引進保險互助制度;四、改革酪農業[3],公布該計畫的同時,將該計畫納入活力創造計畫並公布改訂版的活力創造計畫[4],做為農業競爭力再強化改革之項目。與智慧農業推動相關項目可見於(1)「二、改善人力與土地」面向,促進開發活用ICT遠距離監視水田之低成本水資源管理系統,以構築地區水資源管理模式;(2)「四、改革酪農業」面向,為達到穩定配方飼料價格、強化肉牛生產基礎之目標,推動活用 ICT 減輕勞動負擔、提高生產力以及推動擴大生產規模。   活力創造本部於去(2019)年12月10日公布「農業生產基礎強化計畫」[5]政策,同時公布已納入該計畫的改定版活力創造計畫,旨在加強生產基礎,以加速轉型為進攻型農業,安倍首相同日表示將持續擴大向全球推廣安全、可靠的日本農產品,日本政府透過利用先進技術和促進智慧農業發展,以擴大農產品出口,並決定將鼓勵外國放寬農產品進口限制列為政策方針。財政年度預算追加約3,200億日元(約883億台幣)作為農業措施,利用該預算加強生產基礎,擴大農產品出口量以及鼓勵年輕人參與農業。政策重點之一即為智慧農業落地利用與推動數位政策,包括至2022年無人機噴灑農藥擴大至100萬公頃、至2025年實踐大多數主要從農者能活用數據之農業[6]。 貳、農業生產基礎強化計畫—智慧農業落地實用與數位政策推動   農業生產基礎強化計畫預計藉由強化農業生產基礎,以因應國民必要糧食安定供給、提升糧食自給率、從農者不足農地減少、頻繁發生之自然災害與家畜傳染病、農產品貿易國際環境變化等議題。   計畫構成共11項:1.設立促進農產輸出之指揮總部以更擴大輸出、2.擴大肉用牛・酪農生產方案、3.對應新需求之園藝作物生產體制強化、4.水田農業種植作物轉換為高收益作物、 5.智慧農業落地實用與數位政策推動、6.促進農林水產業之新就業者擴大加入與穩定就業、7.包含梯田等中山間地域[7]之基礎建設整備與活性化、8.強化與食品產業、供應商企業等合作、9.得以對應人手不足之食品流通合理化、10.強化對應極端化自然災害、11.強化豬瘟(Classical Swine Fever,CSF)、非洲豬瘟(African Swine Fever,ASF)等家畜疾病對策。   其中「5.智慧農林漁業的落地實用以及數位政策的推動」內容包括:大力推動活用無人機、IoT、AI等智慧化技術於農林漁業現場落地實用之同時,檢視以數位技術為前提之政策方法,推動農業數位轉型(農業Digital Transformation,農業DX[8]),細項如下所列。 1.加速智慧農業技術落地實施 (1)關於智慧農業實證,包括以果樹、加工用及商用的蔬菜、畜產等需要進一步實證之項目為中心擴大進行,設定優先採選範圍,於災區與中山區地域推廣實證。 (2)促進創造出能夠提供低成本智慧農業技術的新服務(例如共享服務等),有助於加速化智慧農業的落地實施。 (3)由於利用無人機噴灑農藥之方式的快速普及,至2022年度的噴灑面積將擴大到100萬公頃。 (4)為邁向智慧農業的持續性發展,制定地方型戰略,檢討於農業生產現場導入智慧農業機器時確保安全性之措施,促進智慧農業教育、活用農業數據協作平台(WAGRI[9]),維護整備資訊網際網絡環境等綜合性地推動。 (5)為推動農林漁產業領域的創新,例如農林漁產業的完全自動化與無人化,推動具有挑戰性中長期之研究與開發。 (6)透過森林資源數位化與活用ICT,推動智慧林業技術的落地實施,促進木質特性新素材的開發與實證。 (7)漁業產品從生產到流通等各種情況下所取得之數據,建構讓該數據得以相容、共有、活用的數據協作平台。 (8)通過以上的配套措施與努力,至2025年實現大多數主要從農者能實踐活用數據之農業。 2.實現農業數位轉型(農業Digital Transformation,簡稱農業DX) (1)建構農林水產省共通申請服務(通稱eMaff[10]),農林水產省所有補助金申請在內的行政手續,透過結合ID,從民間私人服務擷取必要資訊等方式,創造得以電子化的環境​​。 (2)依據不同制度個別管理的農地相關數據,透過活用電子地圖和農林水產省共通申請服務,將開放資料(OPEN DATA)化之每筆「農地區劃[11]」及其關聯資訊集中統一,創造得以有效管理和有效利用的環境。 (3)促進農業者與行政體系所使用之數據項目標準化,提高數據的相互運用性,並有效地掌握和分析資訊。 (4)農業者傾向智慧手機應用程序(MAFF應用程序[12])將於2020年4月正式營運,結合共通申請服務,根據個別農業者的特性、喜好,提供經營農業、政策資訊。 參、結語   日本內閣推動智慧農業政策,從2013年活力創造計畫,初期設立研究會以規劃智慧農業藍圖等宣示性政策,至2016年農業競爭力強化計畫,具體指出單點性智慧農業技術發展目標。演變至2019年農業生產基礎強化計畫,不同於以往散落在各個章節,僅將智慧農業技術做為其他發展目標的強化方式之一,例如利用智慧農業機械或農業ICT做為手段來達到改善土地的主要目標,於2019年計畫中,首度擬定智慧農業專章,不僅明確喊出「2025年實踐大多數主要從農者能活用數據之農業」做為目標,更聚焦強化智慧農業生產基礎,包括活用農業數據協作平台(WAGRI)、農林漁產業的完全自動化與無人化等,再加上實現農業數位轉型政策,觀察上述政策演進,無一不重視數據活用,普及智農技術、標準化數據規格、數據智財管理,成為發展智慧農業之核心基礎。 [1]陳建宏,〈日本「農林水產業、地域活力創造計畫」概要〉,https://www.coa.gov.tw/redirect_files.php?link=mLZJwrpRJ7lxDTde1lsFvObETU2Iq3jbmF99hWT6DgWGEqualWGEqualWGPlusRFYWGSlash0wK9PdunMMQRpcHLfmXJnjgLFrbeJ1OYF9CHQyN&file_name=jRgEdDwWGEqualWGEqual2SY8WGPlusd8qWB0p6wQ (最後瀏覽日:2020/03/24); 農林水產省,〈「農林水産業・地域の活力創造プラン」の改訂について(概要)〉,http://www.maff.go.jp/j/kanbo/katsuryoku_plan/attach/pdf/index-7.pdf(最後瀏覽日:2020/11/13)。 [2]農林水產省,〈農林水産業・地域の活力創造プラン〉,http://www.maff.go.jp/j/kanbo/katsuryoku_plan/index.html#plan201806(最後瀏覽日:2020/11/13); [3]鄭柏彥、留程鴻、蔡綾容,〈日本農業競爭力強化計畫介紹(上)(下) 〉,財團法人台灣綜合研究院;農林水產省,〈農業競争力強化プログラム〉,https://www.maff.go.jp/j/kanbo/nougyo_kyousou_ryoku/(最後瀏覽日:2020/11/13)。 [4]農林水產省,〈「農林水産業・地域の活力創造プラン」の改訂について〉, https://www.maff.go.jp/j/kanbo/nougyo_kyousou_ryoku/attach/pdf/nougyo_kyoso_ryoku-10.pdf(最後瀏覽日:2020/11/13);農林水產省,〈農林水産業・地域の活力創造プラン(平成28年11月29日改訂) 〉 ;https://www.maff.go.jp/j/kanbo/nougyo_kyousou_ryoku/attach/pdf/nougyo_kyoso_ryoku-5.pdf(最後瀏覽日:2020/11/13)。 [5]農林水産業・地域の活力創造本部,〈農林水産業・地域の活力創造プラン 令和元年12月10日改訂〉,http://www.kantei.go.jp/jp/singi/nousui/dai26/siryou3.pdf(最後瀏覽日:2020/11/13);農林水產省,〈農業生産基盤強化プログラム〉, https://www.maff.go.jp/j/council/seisaku/kikaku/bukai/attach/pdf/kikaku_1223-2.pdf(最後瀏覽日:2020/11/13)。 [6]〈農林水産業・地域の活力創造本部(第26回)議事次第-令和元年12月10日〉,首相官邸網站,http://www.kantei.go.jp/jp/singi/nousui/dai26/gijisidai.html(最後瀏覽日:2020/11/13);日本農民新聞社,〈農林水産業・地域の活力創造プランを改訂=政府〉,2019/12/12,https://agripress.co.jp/archives/4024;農業協同組合新聞,〈水田農業で高収益産地 500創設-政府の生産基盤強化策〉,2019/12/17,https://www.jacom.or.jp/nousei/news/2019/12/191217-39916.php(最後瀏覽日:2020/11/13)。 [7]農林水產省將農業用地分成四種類型,都市的地域、平地農業地域、中間農業地域、山間農業地域,後兩者合稱為中山間地域,係指從平原的外緣至山間地的區域。Wikipedia,〈中山間地域〉,https://ja.wikipedia.org/wiki/%E4%B8%AD%E5%B1%B1%E9%96%93%E5%9C%B0%E5%9F%9F(最後瀏覽日:2020/11/13)。 [8]デジタルトランスフォーメーション(Digital transformation,簡稱DX),https://ja.wikipedia.org/wiki/デジタルトランスフォーメーション、https://en.wikipedia.org/wiki/Digital_transformation(最後瀏覽日:2020/11/13)。 [9]WAGRI代表的是作為一數據平台 ,由各式的數據與服務連環成一個輪,調和各個社群、促進「和」諧,期待引領農業領域之創新,由WA+AGRI組合而成(WA是和的日文+農業AGRI),WAGRI平台網站,https://wagri.net/ja-jp/(最後瀏覽日:2020/11/13)。 [10]農林水產省(Ministry of Agriculture, Forestry and Fisheries,簡稱MAFF)。 [11]為便於農地管理而分級劃分的區域。 [12]MAFF應用程序為暫稱,僅為初步規劃還未定案。

澳洲新南威爾斯政府將推動創新採購與擴大監理沙盒適用範圍

  澳洲經濟核心所在之新南威爾斯州(首府雪梨)於2016年11月30日提出新南威爾斯創新戰略(The NSW Innovation Strategy),嘗試整合政府公部門、營利組織、非營利組織、教育及研究機構、社群或個人共同面對新的經濟、社會、環保議題之挑戰,藉由投入新型態的公共投資(the new forms of public investment),協助發明與創新者得以將他們好的創意轉換為成功的商品與服務。此外,不僅要發展未來產業創造工作機會,更要為此預先儲備能夠發揮高科技發展所需技能之人力資源。   基此,新南威爾斯政府的創新戰略將著重於下列四項目標的達成: (1)政府成為創新領導者(Government as an innovation leader) (2)促進和運用研究發展(Fostering and leveraging research and development) (3)未來技能養成(Skills for the future) (4)創業者的家園(A home for entrepreneurs)   同時,具體執行方法,在機制面上首先將啟動新南威爾斯創新窗口服務(NSW Innovation Concierge Service),與澳洲跨部會創新委員會協調運作,以確保重要意見並未遺漏,並且讓專家及決策者可考量到各種可能。   而其他執行方法中,在法制面上影響較大者是在澳洲政府推動金融科技之監理沙盒制度的基礎上,嘗試擴大適用範圍不限於金融業之監理法令,可及於創新產業之法令試作。另外,也將針對採購規範進行修正,使政府與民間可以更便於運用政府採購促進產業發展與扶助中小企業,同時滿足政府提供公共服務之需求。更甚者,將推動對創新商品及服務的政府採購,藉由提供一定市場需求,穩定新創科技及業者之發展。

TOP