德國聯邦內閣於2015年5月27日提出安全數位通訊及醫療應用法(Entwurf eines Gesetzes für sichere digitale Kommunikation und Anwendungen im Gesundheitswesen, E-Health-Gesetz)草案。
德國聯邦衛生部部長說明因草案的形成一直有所爭議,以致過程冗長。而為了保證大量數據的資料維護及安全,德國資料保護及資訊流通之主管機關聯邦資料保護官(Bundesbeauftragten für den Datenschutz und die Informationsfreiheit, BfDI)及聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI),從一開始即密切參與其中合作。針對電子健保卡(die elektronische Gesundheitskarte)的資訊安全要求,德國聯邦衛生部將關注科技發展,持續更新相關規定。
本法案包括高安全標準之數位設施的建置期程,以及產生病人具體應用效益的時間規劃表,重要規定如下:
1.主檔資料管理(Stammdatenmanagement):被保險人主檔資料(Versichertenstammdaten)的測試及更新,自2016年7月1日起,於兩年內針對全國區域進行大範圍測試。
2.結合病人的緊急資訊(Notfalldaten):醫生能立即取得所有重要資訊,如過敏或過去病史等資料。當病人有該等需求之意願時,自2018年起健保卡即應包含緊急資訊。
3.藥物治療計畫(Medikationsplan):包含病人使用藥物治療的所有資訊,藥物治療計畫能於治療過程中使病人更加安全。而同時最少使用三種藥物的被保險人,自2016年起應採行藥物治療計畫。之後應可於電子健保卡取得藥物治療計畫相關資訊。
4.以電子方式發送醫療診斷報告(Arztbriefe):因目前為止醫療診斷報告仍係透過郵寄,然而為求重要資訊立即呈現,於2016年及2017年醫生以電子方式安全寄送診斷報告者,每份報告應收取55歐分的費用。
5.遠距醫療(Telemedizin):為推動遠距醫療的利用,自2017年4月1日起遠端傳輸X光照(Röntgenaufnahmen)的醫療診斷結果將收取費用。
6.醫療資訊系統的互通性:建立互通性指引(Interoperabilitätsverzeichnis)應可使醫療方面各類資訊系統所採行的標準透明化,且可使其規範更加標準化。而該指引應包含遠距醫療應用資料入口網站(Informationsportal)。
7.本法案所提期程,特別係針對實施的代表性自治組織(Organisationen der Selbstverwaltung),德國聯邦法定健康保險總會(GKV-Spitzenverband)、聯邦特約醫師協會(Kassenärztliche Bundesvereinigung)及聯邦特約牙醫協會(Kassenzahnärztliche Bundesvereinigung)適用。
經產省為了在智慧家庭領域創造新事業,整備相關資料活用環境,蒐集共有及分析從多種多樣機器及服務所實際產出之資料,於2017年8月開始實施實證實驗。在實施前,為了使參加實證之民間公司間,得為資訊合作而完備相關規則及保安對策,於5月24日召開「智慧家庭資料活用環境整備推進事業」檢討會。因物聯網(IoT)的擴大得以蒐集龐大資料,以及現在人工智慧(AI)解析能力提高下,期待在各種領域提高生產效率及創造新的事業模式。特別是在智慧家庭領域,其在「新產業構造願景的中間整理」(2016年4月27日、產業構造審議會新產業構造部會)中,為有力重要領域。因此,以IoT技術等使家庭內機器網路化,活用此一資料,除了使既存事業模式發生變革或創造新事業模式外,也期待可以透過把握製品之使用資訊,而提高產品回收(recall)率,並促進資源回收以及家庭部門節能化等相關社會課題解決上。為此,本事業係以對於家庭內機器網路化及透過此而創造新事業為目標,整備事業環境與社會課題及各主題新事業服務創造相連結,因應每個人的生活模式而使得生活空間客製化成為可能,實現智慧家庭之社會目標。
世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引世界衛生組織(World Health Organization, WHO)於2021年6月底公布「人工智慧於健康領域之倫理與治理」(Ethics and governance of artificial intelligence for health)指引。目前人工智慧於在改善診斷、治療、健康研究、藥物開發及公共衛生等健康領域皆有廣泛之應用與前景,而該指引首先指出人工智慧應用於健康領域中最相關之法律與政策外,並強調相關應用皆須以「倫理」及「人權」作為相關技術設計、部署與使用之核心,最後則提出人工智慧應用於健康領域之六大關鍵原則: 一、保護人類自主性(autonomy):本指引認為人類仍應該掌有關於醫療保健系統之所有決定權,而人工智慧只是輔助功能,無論是醫療服務提供者或患者皆應在知情之狀態下作決定或同意。 二、促進人類福祉、安全與公共利益:人工智慧不應該傷害人類,因此須滿足相關之事前監管要求,同時確保其安全性、準確性及有效性,且其不會對患者或特定群體造成不利影響。 三、確保透明度、可解釋性與可理解性(intelligibility):開發人員、用戶及監管機構應可理解人工智慧所作出之決定,故須透過記錄與資訊揭露提高其透明度。 四、確立責任歸屬(responsibility)與問責制(accountability):人工智慧在醫學中所涉及之內部責任歸屬相當複雜,關於製造商、臨床醫師及病患間相關之問責機制之設計將會成為各國之挑戰,故須存在有效之機制來確保問責,也應避免責任分散之問題產生。 五、確保包容性(inclusiveness)與衡平性(equity):應鼓勵應用於健康領域之人工智慧能被廣泛且適當地使用,無論年齡、性別、收入及其他特徵而有差別待遇,且應避免偏見之產生。 六、促進具適應性(responsive)及可持續性之人工智慧:人工智慧應符合設計者、開發者及用戶之需求與期待,且能充分具適應性之回應且符合使用環境中之要求。
中國大陸網路安全法於6月1日正式施行中國大陸網路安全法於去(2016)年11月通過,於今(2017)年6月1日正式施行,該法主要係為了保障網路安全,維護網路空間主權與國家安全、社會公共利益,保護公民、法人和其他組織的合法權益,為第一個國家層級處理網路安全問題的法律,旨在確保維護網路空間的國家主權、保護使用者個資、防範網路攻擊及網路詐騙。 中國大陸網路安全法共七章79條,包括第一章總則、第二章網路安全支持與促進、第三章網路運行安全、第四章網路訊息安全、第五章監測預警與應急處置、第六章法律責任、第七章附則。其規範重點之一為關鍵資訊基礎設施正式納入網路安全保護範圍內,關鍵資訊基礎設施之定義不僅包括電力、運輸和金融等傳統關鍵行業,還包括法律規定涉及民生的其他基礎設施,表示任何關鍵資訊基礎設施相關廠商、供應商等外國公司,以及擁有大量中國大陸訊息的廠商,都有可能成為中國大陸網路安全法監管、執法調查、強制執行的主要對象。 中國大陸網路安全法亦要求關鍵資訊基礎設施相關廠商將個資與重要數據資料在地化,或是將這些數據資料傳輸至國外前,必須經過相關的監管機構進行自我安全評估或先加以批准。
美國加州「Asilomar人工智慧原則決議」美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下: (1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。 (2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。 (3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。 (4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。 (5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。 (6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。 (7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。 (8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。 (9)人工智慧所產生之責任,應由設計者以及建造者負擔。 (10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。 (11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。 (12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。 (13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。 (14)人工智慧之技術應盡力滿足越多人之利益。 (15)人工智慧之經濟利益,應為整體人類所合理共享。 (16)人類對於人工智慧之內在目標應享有最終設定權限。 (17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。 (18)人工智慧所產生之自動化武器之軍備競賽應被禁止。 (19)政策上對於人工智慧外來之發展程度,不應預設立場。 (20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。 (21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。 (22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。 (23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。