Google數位圖書館計劃面臨著作權法爭議

         全球最大搜索引擎 Google公司於去年12月中宣布,已與美國紐約公共圖書館以及哈佛大學、史丹福大學、密西根大學、牛津大學合作,將數百萬冊藏書數位化讓網友免費瀏覽。此一計畫預計花十年時間建構,在2015年啟動,經費約估15000萬到2億美元之間 (The Google Print Program)。雖然此一構想極具創意,但是由於將館藏圖書數位化牽涉著作權爭議,因此由125家非營利學術出版機構組成的美國大學出版協會(AAUP)已針對若干疑點去函,希望Google能釐清著作權法上之疑慮,以利整體計劃之推動。


  AAUP所持最重要依據係美國著作權法第107條有關合理使用之規定。AAUP質疑,以Google如此大規模,就圖書內容性質不加以區分,全面性的圖書數位化工程,恐怕無法符合著作權法所訂出的合理使用標準。蓋著作權法有關是否符合合理使用之界定標準,是以事實情況及個案之判別方式為主,故無法想像Google如何在未進行個別之判斷前,便能夠概括性的依此而主張其享有合法權利。事實上,Google之主張與法院實務界之認知存在極大落差。


  此外, Google的數位圖書館計畫在許多細部執行事項上,仍存有許多疑點,導致原先欲加入的AAUP會員,無法確保圖書內容完成數位化後,對於以銷售書籍及授權為主要營收來源之出版社,恐會產生造成市場排擠效果之憂慮。


  藉由數位技術雖然可以挑戰人類夢想的極限,但過程中涉及的法律層面問題,卻相當程度羈絆了夢想前進的速度。 Google的數位圖書館計劃再次印證了新興技術與現行法規不協調的窘況。就現有事實資料以觀,Google若未能與學術出版商妥善安排著作權引發之爭議,此一計畫未來是否能順利執行,恐怕存有極大疑問。

相關連結
※ Google數位圖書館計劃面臨著作權法爭議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=692&no=57&tp=1 (最後瀏覽日:2026/01/14)
引註此篇文章
你可能還會想看
英國公布合成生物學公眾對話報告,以避免早期爭議的產生

今(2010)年5月,美國克雷格文特爾研究所宣布,成功完成首個由電腦設計之人造基因組控制,並具有自我繁殖功能的合成細胞,研究人員將其取名為辛西亞(Synthia),並發表於科學雜誌,此舉意味生物科技的發展,已經從生命複製階段步入生命創造階段。此次合成細胞的成功,引發先進國家政府方面的對經濟利益、管理及社會法制影響等方面的重視。美國總統歐巴馬便敦促生物倫理委員會對此發展進行密切觀察,評估此研究將之影響、利益和風險。 英國對於合成生物學發展的規範議題也十分關心,該國2009年開啟有關合成生物學的公眾對話(public dialogue),並於今年6月完成並公布報告。獲得的結論如下: 一、肯定合成生物學所帶來的機會: 英國民眾普遍認為合成生物學的應用將會帶來許多重要的機會,可協助解決當前社會所面臨的重大挑戰,例如氣候變遷、能源安全與重大疾病等。 二、關心合成生物學發展的不確定性: 由於合成生物學的發展充滿著不確定性,故當長期的負面影響尚未可知時,有些民眾反而因發展過於快速而覺得到沒有確定感。 三、期待國際規範形成: 英國民眾認為希望能有國際性的合成生物學規範與管理措施,尤其應針對合成生命物質在未受到管制而釋出於環境之生物安全議題,猶應有國際性的管理規範。 四、衡量科研人員動機: 英國民眾擔心,研究者好奇心的驅使,會使合成生物學發展過於快速,故應衡量其研究所帶來的廣泛影響。 五、強調科研人員之責任 負責資助的研究委員會應有清楚角色,促使科學家在此新興科技領域研究中,培養思考科學家責任之能力。 此次對話結果將會納入英國對合成生物學研究補助的法規政策,成為決定補助方式、項目與範圍的重要參考依據。這樣的作法是考量到,希望使合成生物學在健全的管理與法規下持續發展,預先減低過往生物科技發展導致民眾疑慮而致延滯發展的可能性,也更能將政府科研資助有效地投入有利於國家整體發展的領域中。

中國大陸加入國際工業設計保護的海牙體系

  世界智慧財產權組織(World Intellectual Property Organization,簡稱WIPO)宣布中國大陸於2022年2月5日提交了加入《海牙協定》1999 年日內瓦文本的文件,加入國際工業設計註冊的海牙體系(Hague System),該協定將於2022年5月5日在中國大陸生效。隨著中國大陸的加入,海牙體系涵蓋的國家總數將達到 94 個,其中包含根據世界銀行排名十大經濟市場中的九個。   工業設計形成物品的裝飾,其可由三維特徵(例如物品的形狀)或二維特徵(例如圖案、線條或顏色)組成,圖形用戶界面或虛擬世界物品則成為最近流行的設計形式。海牙體系為工業設計提供國際保護的解決方案,申請人不需要在各個國家或地區分別提交多次申請,只要透過海牙體系提交一份國際申請,就可在90多個國家/地區註冊多達100項設計。   據統計,2020 年中國大陸居民共提交了795,504件設計,約佔全球總數的 55%。中國大陸加入海牙體系將使其居民可更容易地在海外取得工業設計保護並推廣市場,外國設計師也將能夠更容易地進入中國大陸市場。   我國企業或設計師如有工業設計保護需求,亦可評估運用海牙體系提交國際工業設計申請,在多個國家取得設計註冊。

德國推行氣候保護協議和綠色領導市場措施,加速基礎工業氣候中和技術發展

德國經濟及氣候保護部科學顧問委員會於2023年2月8日公布《向氣候中和產業轉型:綠色領導市場和氣候保護協議》(Transformation zu einer klimaneutralen Industrie: Grüne Leitmärkte und Klimaschutzverträge)報告,擬透過綠色領導市場(Grüne Leitmärkte)和氣候保護協議(Klimaschutzverträge)兩種工具措施,在基礎⼯業中⼤規模推廣氣候中和⽣產技術。 科學顧問委員會指出,目前僅靠碳定價已無法調整在氣候保護面向的市場失靈問題,加上基礎工業(例如鋼鐵、水泥、合成氨等)的氣候友好型技術投資上缺乏經濟效益,因此政府需要採取額外措施來實現基礎工業的氣候中和。 綠⾊領導市場則是國家建立或支持以氣候中和⽅式⽣產的原物料(例如綠⾊鋼鐵)的市場,政府採購中可優先使⽤綠⾊原料,也可以透過監管措施,規定私⼈和企業在⼀定範圍內只能使⽤含有⼀定⽐例綠⾊原料的產品。氣候保護協議則是國家與企業間,就⽣產氣候友好型產品簽訂契約,保證企業將獲得15年的補償⾦,以補償採行氣候中和⽣產術所產生較⾼的成本,同時亦保護企業免受碳定價波動和其他⾵險的影響。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP