美國專利商標局(USPTO)在2005年11月,與歐洲專利局(EPO)及日本專利局(JPO)之三邊會前會上,提出了一個簡稱為「三路」(Triway)的檢索共享計畫,該計畫希望能使三局的檢索技術發揮槓桿效果,進而能使專利申請者及各該專利管理當局受惠。 三局其後在2007年11月的三邊會前會上同意先期進行有限的試驗計畫。 「三路」的基本構想乃希望透過縮短時效來推廣資源分享,同時能使申請者及各該管理當局在很短的一定時間內取得三局的檢索結果,進而使申請者及各該局有機會能分享及考量所有的檢索結果,同一協助改善各該局對同一專利申請者專利審定之品質。 在「三路」試行計畫下,各該局對於在巴黎公約下之同一專利申請將適時提早進行檢索,且各該局的檢索結果將由三局共同分享以減少各該局的檢索及審查工作量。 三局同意「三路」試行計畫之試行對象限於在美國專利商標局首次提出申請者,並限於一百個試行專利申請案,試行計畫將在明年的同一時間結束,或在接受一百個試行專利申請案後提前結束。
美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。 此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。 時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。
美國對於聯網環境中「關鍵基礎設施」之資訊安全議題展開行動面對境外網路安全的風險,美國歐巴馬總統於2013年2月12日,正式簽署「改善關鍵基礎設施之網路安全」行政命令(Executive Order 13636–Improving Critical Infrastructure Cyber security),據該行政命令第二款,將「關鍵基礎設施」定義為,「對於美國至關重要,而當其無法運作或遭受損害時,將削弱國家安全、經濟穩定、公共健康或安全之有形或虛擬系統或資產」,遂採取相對廣義之解釋。該行政命令第七款,亦指示美國商務部「國家標準技術研究所」(National Institute of Standard and Technology, NIST),將研議ㄧ個提升關鍵基礎設施資通訊安全之架構(Framework to Improve Critical Infrastructure Cybersecurity),將美國聯邦憲法所保障的企業商業機密、個人隱私權和公民自由等法益納入考量。 針對關鍵基礎設施引發重要之法制議題,美國副司法部長Mr. James M. Cole表示,由於關鍵基礎設施影響所及者,乃人民在法律下的權益,公部門政府將在該項議題上與私部門共同合作(partnership),且未來將研議通過立法途徑(legislation),將隱私權和公民權保護(the incorporation of privacy and civil liberties safeguards)納入關鍵基礎設施資通訊安全法制之全盤考量,相關趨勢殊值注意。
德國公佈聯邦政府人工智慧戰略要點德國政府於2018年7月18公佈「聯邦政府人工智慧戰略要點」(Key points for a Federal Government Strategy on Artificial Intelligence),係由德國聯邦經濟事務及能源部、聯邦教育及研究部,與聯邦勞動及社會事務部共同撰寫而成。 德國政府表示該要點將作為推動人工智慧技術與產業發展的基礎方針,並希望以負責任的方式以及朝向社會利益發展的方向進行人工智慧開發與應用。 德國人工智慧戰略要點摘要如下: 1. 研究能量:必須大幅增加研究支出並且爭取世界一流人才。 2. 人工智慧能力應泛分佈在社會各處:各學科與產業領域皆需要人工智慧。 3. 資料作為人工智慧發展的基礎:資料是人工智慧發展的重要關鍵,德國的資料發展重點將放在資料品質的強化。 4. 基礎設施:人工智慧中重要的技術「深度學習」,不僅需要大量資料,同時還需要強大的計算能力,德國需要加強計算能力的硬體設備。 5. 經濟應用:德國數位化發展的下一步需要仰賴人工智慧技術,尤其是中小企業採納人工智慧技術方面將會是焦點之一。 6. 社會法制:人工智慧發展過程中牽涉許多道德以及法制、監管議題,德國政府認為這些都必須請不同利害關係人共同公開討論。 7. 國際合作:德國作為歐盟會員國之一,未來的人工智慧發展將力求與歐盟各國合作。 整體而言,德國的人工智慧戰略著重在建立人工智慧生態系統,並強調人與機器之間的合作關係,為人工智慧產業發展奠定良好基礎。德國政府將基於此要點繼續制定進一步的人工智慧戰略,並預計將於2018年12月公佈德國的人工智慧戰略完整報告。