英國國家統計局(Office for National Statistics)轄下之政府資料品質中心(Government Data Quality Hub)為實踐英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)發布之《國家資料戰略》(National Data Strategy),於2020年12月3日釋出《政府資料品質框架》(The Government Data Quality Framework),以達成國家資料戰略中「資料基礎(Data Foundation)」之核心目標。該框架提出「資料品質原則」(Data quality principles),旨在解決目前政府資料品質低落的問題。該原則包含以下五點: 一、確保資料品質:機關內部應建立有效的資料治理機制,例如培訓員工具備管理資料的能力、持續改進資料品質等。 二、了解使用者需求:機關應將使用者對資料品質的需求視為優先處理事項。 三、評估資料於資料生命週期各階段之品質:機關應密切關注資料於生命週期各階段之品質,並與使用者及利益關係人交換意見。 四、持續溝通資料品質:機關應持續與使用者交流資料品質現況,提供使用者有效的文件及中繼資料(metadata)。 五、了解造成資料品質低落的主因:分析造成資料品質低落的根本原因,從源頭徹底解決資料品質問題。 英國國家統計局政府資料品質中心希望藉由本框架揭示的資料品質原則,提升政府機關人員主動辨別及解決資料品質問題的能力,以改善政府資料品質、為人民帶來更高品質的資料,釋放資料價值並促進社會經濟發展。
歐洲央行提出7500億歐元之「緊急債券收購計畫」以因應新冠肺炎疫情歐洲央行(European Central Bank, ECB)於2020年3月18日提出7500億歐元之「緊急債券收購計畫」(Pandemic Emergency Purchase Programme),紓困金額占歐盟年GDP之7.3%,以協助歐盟面臨新型冠狀病毒(covoid-19)所帶來之經濟衝擊,同時也減緩再生能源產業因疫情所帶來之影響。 就此,歐洲央行總裁Christine Lagarde表示,對於紓困對象及方法,歐洲央行將採取不分產業類別自市場購買公債或私人債券之方式,以因應疫情所帶來之影響,其中也包含歐盟投資銀行(European Investment Bank, EIB)所發行之「綠色債券」(Green Bond)。又綠色債券係歐盟投資銀行於2007年所發行,又名「氣候意識債券」(Climate Awareness Bond),職是故,歐洲央行針對歐盟投資銀行綠色債券進行紓困將使再生能源產業蒙受其利。 依歐洲央行之「緊急債券收購計畫」,歐洲央行僅得自次級市場(Secondary Market)購買債券,而不得直接自初級市場(Primary Market)購買,亦即歐洲央行僅得自價證券買賣之交易市場購買債券,而不得直接購買首次出售之有價證券,此項限制,也包含歐盟投資銀行所發行之綠色債券。 以歐盟投資銀行綠色債券為例,歐洲央行之操作機制在於透過此項購買手段,提升歐盟投資銀行綠色債券之市場價格,同時讓歐盟投資銀行面對投資人時,可以享有較為優渥之議價空間,以降低歐盟投資銀行未來所要付給投資人之利率。同時歐洲央行可再進一步降低對於歐盟投資銀行之利息,進一步降低歐盟投資銀行因發行綠色債券所帶來之利息壓力,促使綠色產業得以因應疫情之衝擊。 如此歐洲央行即達成其目的,減緩投資市場之震盪,同時達到振興經濟產業效益。這也是為何,歐洲央行僅得自次級市場(Secondary Market)購買債券,而不得直接自初級市場(Primary Market)購買債券之原因。
英國推動農場資料認證計畫,首重資料生成、保護與維護管理英國Farm Data Principles組織(下稱FDP,前身為英國農場資料委員會(The British Farm Data Council)),在2024年2月26日英國農業科學技術跨黨派小組(All Party Parliamentary Group for Science & Technology in Agriculture)於西敏寺辦理的會議,正式宣告農場資料認證計畫,FDP強調因目前欠缺資料治理原則,導致缺乏信任等資料使用障礙,並指出若未事先約定資料如何使用等,將致無法明確保護資料。截至目前為止,已經有7個組織取得完全(Full)或臨時(Provisional)認證。 農場資料認證計畫包含四大核心要求,分別為: 1.「您的資料是您的資料(YOUR DATA IS YOUR DATA)」:如強調應由資料生成者擁有及管控資料,且未經其許可,不得接觸、儲存、共享或銷售資料,以及應明確說明參與資料處理的對象等。 2.「通過認證的組織清楚資料共享的價值和好處(CERTIFIED ORGANISATIONS ARE CLEAR ABOUT THE VALUE AND BENEFIT OF DATA SHARING)」:如應針對資料使用範圍及方式,提供明確說明,以及必須解釋如何整合資料及其衍生的價值等。 3.「通過認證的組織須確保資料安全(CERTIFIED ORGANISATIONS KEEP YOUR DATA SAFE)」:如為維護資料安全,應採取適當的資料安全標準及規劃資料外洩處理流程等。 4.「通過認證的組織須努力使資料變得簡單(CERTIFIED ORGANISATIONS STRIVE TO MAKE DATA EASY)」:如提供資料相關教育訓練,以及確保組織能夠回應請求或投訴等。 為因應農業資料於研發過程中的資料應用風險,資策會科法所創意智財中心協助農業部研擬「智慧農業科技研發資料源頭查檢說明手冊」,並於2024年3月14日正式發布,相關手冊所附之資料管理查檢表,可協助智農科技研發者針對資料取得、使用及管理,事先進行整體性規劃,並與不同的資料提供者及合作對象就資料權利義務約定清楚。其中針對資料管理,更依照資料生成、保護及維護的標準化作業流程,設計各階段相應的管控要項,確保農業資料持續處於有效管理的狀態,以降低資料潛在風險,促進資料流通應用。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
何謂「阿西洛馬人工智慧原則」?所謂「阿西洛馬人工智慧原則」(Asilomar AI Principles),是指在2017年1月5日至8日,於美國加州阿西洛馬(Asilomar)市所舉行的「Beneficial AI」會議中,由與會的2000餘位業界人士,包括844名學者專家所共同簽署的人工智慧發展原則,以幫助人類運用人工智慧為人類服務時,能確保人類的利益。 該原則之內容共分為「研究議題」( Research Issues)、「倫理與價值觀」( Ethics and Values),及「更長期問題」( Longer-term Issues)等三大類。 其條文共有23條,內容包括人工智慧的研究目標是創造有益的智慧、保證研究經費有益地用於研究人工智慧、在人工智慧研究者和政策制定者間應有具建設性並健康的交流、人工智慧系統在其整個運轉周期內應為安全可靠、進階人工智慧系統的設計者及建造者在道德層面上是其使用、誤用以及動作的利害關係人,並應有責任及機會去影響其結果、人工智慧系統應被設計和操作為和人類尊嚴、權利、自由和文化多樣性的理想具一致性、由控制高度進階人工智慧系統所取得的權力應尊重及增進健康社會所需有的社會及公民秩序,而非顛覆之,以及超級智慧應僅能被發展於服務廣泛認同的倫理理想,以及全人類,而非單一國家或組織的利益等等。