日本學術會議於2020年9月15日提出「邁向感染症對策與社會改革之ICT基礎建設強化和數位轉型推動」(感染症対策と社会変革に向けたICT基盤強化とデジタル変革の推進)法制建議。新冠肺炎疫情突顯出日本ICT基礎建設不足和急需數位轉型之問題,日本學術會議從「醫療系統之數位轉型」、「社會生活之數位轉型」和「資安與隱私保護」等觀點提出建議,希望能在確保資安及隱私的前提下,達到防止感染擴大與避免醫療崩壞,以及減少疫情對社會經濟影響等目標。針對「醫療系統之數位轉型」,未來應建立預防和控制感染症之綜合平台,統一地方政府感染資訊之公開內容、項目,檢討遠距醫療和數位治療法規,進行相關法制環境和基礎設施之整備;針對「社會生活之數位轉型」,日後應積極推動遠距醫療、遠距工作和遠距教育,並進行所需基礎建設、設備和人才培育之整備;針對「資安與隱私保護」,除檢討建立利用感染者個人資料,以及可知悉個人資料利用狀況之制度,亦應擴大及強化信用服務(trust service)和感染資訊共享系統等措施。
菲律賓最高法院延長網路犯罪法適用限制之時間菲律賓最高法院於2013年2月5日延長了之前(2012年10月9日)對於網路犯罪防制法(Cybercrime Prevention Act of 2012),所做出的120日暫時限制適用令(Temporary Restraining Order),表示此一法令暫時尚無法正式施行。對此,菲國參議員多表示贊成,而對於該法主要的批評包括過度侵害言論自由、違反程序正義、比例原則以及一事不兩罰原則,並可能導致「寒蟬效應」,先前聲請停止該法施行的相關人士則認為該法過於模糊且規範範圍過廣。 該法之具體適用爭議如:(1)ISP業者僅因刊登誹謗性言論,即可能遭致處罰。(2)該法12條授權主管機關可即時蒐集利用電腦系統之特定通訊資料。(3)網路使用者可能被認定為網路犯罪之幫助或教唆者而被處罰。(4)政府可能依據此法蒐集網路使用者之各種資料。 不過,菲國檢察總長Francis Jardeleza 對此則表示,此法雖有缺陷,但亦尚未至完全可廢止之程度。另外,尚有菲律賓全國記者聯盟(National Union of Journalists of the Philippines, NUJP)與菲律賓網路自由聯盟(Philippine Internet Freedom Alliance, PIFA)對此限制適用令表示支持,並認為對於法令與自由衝突爭議正方興未艾。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
社群網站平台的商標爭議-Twitter v. TwitpicTwitpic公司為提供圖像分享服務軟體服務的公司,於2008年成立,2009年起,提供Twitter(微博)社群網站平台使用者,透過運用Twitpic的即時圖像分享功能,將照片及影像同時上傳至微博的服務;截至2014年6月已提供使用者此項微博平台的分享服務至少6年。Twitpic於2013年10月3日,以公司名稱「TWITPIC」為名稱,向USPTO(美國專利商標局)提出國際分類第42類之電腦服務之商標註冊案,並於2014年6月24日核准公告。 微博公司於知悉Twitpic商標申請資訊後,除了以Twitpic商標近似於先前註冊商標Twitter而提出商標異議外,並威脅Twitpic公司放棄商標申請,否則將切割Twitpic可直接連結照片至Twitter平台的服務。 同時,微博公司發言人表示,為了確保公司品牌及商譽不被侵害及淡化,故除了對於Twitpic公司提出商標異議外,並為了確保使用者能持續使用將照片及影像即時上傳至微博的服務,將由微博平台自行提供相關功能,以減少使用者無法運用Twitpic服務之不便。 因此,Twitpic公司負責人 Noah Everett於2014年9月初宣布,在無足夠的資源對抗大公司如微博的脅迫下,被迫於9月底關閉Twitpic服務。 依據Twitpic於微博上發布之最新消息顯示,Twitpic已被其他買家收購,將持續經營,但有關商標爭議案之後續發展,將持續觀察。