加州公佈影音遊戲法案臨危憲爭議

     加州州長阿諾‧史瓦辛格於 2005 10 7 日簽署禁止販售暴力影音遊戲 (Violate Video Game) 與未成年人之影音遊戲法案,影音遊戲業者對於此法案之通過表示強烈抗議,主張該法案違反美國憲法修正條文第一條言論自由之保護。


  該法案禁止販賣或出租具強烈暴力色彩之影音遊戲與未滿
18 歲之未成年人,同時要求此類遊戲必須於包裝正面依據規定標誌標示明顯之「 18 」字樣,違者將處以 1000 美元以下之罰金。州長史瓦辛格先生指出,這些遊戲多半是為成人所設計,是否讓青少年接觸此類遊戲,應由其家長決定之,故此法案並未限制該未成年人之家長購買或租用該類遊戲提供未成年人使用。


  美國「影音軟體業者協會」
(Video Software Dealer Association) 以及「娛樂軟體協會」 (Entertainment Software Association) 等業者代表計畫以訴訟方式爭議此法之合憲性並予以推翻,而美國聯邦法院曾對於華盛頓州之類似法案作出不利之判決,使得此法案之未來仍為一個未知數。值得一提的是,美國其他州亦有類似法案通過,其中包括伊利諾州以及密西根州,目前「娛樂軟體協會」針對此兩州之法案已於聯邦法院提起訴訟

相關連結
※ 加州公佈影音遊戲法案臨危憲爭議, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=699&no=57&tp=1 (最後瀏覽日:2026/01/30)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

德國聯邦政府提出《資訊科技安全法2.0》草案

  德國聯邦政府(Bundesregierung)於2020年12月16日通過「提升資訊科技系統安全性的第二版法律(Zweiten Gesetzes zur Erhöhung der Sicherheit informationstechnischer Systeme)」草案,又稱「資訊科技安全法2.0(IT-Sicherheitsgesetz 2.0)」,該草案概述如下: (1)加強德國聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI)權限: BSI可對聯邦行政事務行使控制與審查權、檢測資訊系統和公共電信網路相連的安全弱點、發展分析惡意軟體和攻擊的系統與程序,並擴張其對聯邦通訊技術紀錄資料的儲存期間至12個月。 (2)加強消費者保護: 導入IT安全標籤(IT-Sicherheitskennzeichen),製造商應於該標籤中置入產品安全性聲明與由BSI提供之IT安全性資訊;此外BSI有權要求電信服務業者和產品製造商提供其儲存資料與相關必要資訊。 (3)加強企業作為義務: 關鍵基礎設施提供者有報告及使用攻擊檢測系統檢測安全威脅的義務,該報告義務在草案中將擴張適用於具特定公共利益之公司,如與國防和保密資訊IT產業相關、具經濟上重要性的公司,以及受重大事故條例(Störfallverordnung, StöV)所規範者。 (4)加強國家保護功能: 國家應建立認證機制,並課予關鍵基礎設施的供應者通過該認證的義務,即供應者需確保其設施內的零件不具不適當的技術特性,尤其可能被間諜活動或恐怖主義用以破壞關鍵基礎設施的安全與功能之重要零件。   該草案目前於德國聯邦議院(Deutscher Bundestag)進行審查。

歐洲理事會( European Council ) 通過「菸草製品指令」修正案(Revision of the Tobacco Products Directive)

  歐洲理事會( European Council ) 於今年度(2014)3月14日通過「菸草製品指令」修正案(Revision of the Tobacco Products Directive),並預計於5月公布生效。指令生效後,歐盟各會員國應於指令公告歐盟官方公報後兩年內,將本指令內容納入其內國法體系中。   該項指令為降低菸草製品對未成年人吸引力,針對菸草製品包裝及成分管制達成共識,並將電子菸納入本次修法規範,指令主要規範內容如下: (一)警示文字和圖示應同時呈現 嚴格規範菸草產品需標示有礙健康的訊息和警語,並以圖示與文字呈現。除涵蓋外包裝正面與背面的65%外,側邊應標記妨害健康之警示。例如:「尼古丁會上癮,可能有害健康」或,「受損肺部圖片」。 (二)菸草產品成分與添加物之管制 菸草產品的外部包裝與內容物部份,需讓消費者清楚瞭解,購買的菸草產品有危害健康之疑慮。例如:不得將菸草產品以糖果、或香水化妝品等樣式包裝之;並嚴禁添加水果口味,薄荷或香草等添加物抑制菸草刺激氣味。 (三)全面禁止電子菸品廣告之播放 本次修正案更規定歐盟各會員國將於2016年起禁止撥放任何有關電子菸品銷售或販賣之廣告。   日前,我國衛福部食品藥物管理署公布市售電子煙檢驗報告,其中市售電子菸尼古丁檢出率達86%。我國有關單位除應提高我國菸品查緝管制強度外,實可借鏡歐盟新近管理作法,強化我國電子菸、菸品標示與相關管制規範。

歐洲創新委員會發布2024年工作計畫,將對策略性科技公司及新創公司提供超過12億歐元的資金

歐洲創新委員會(European Innovation Council, EIC)於2023年12月12日發布2024年工作計畫,其中三項計畫將對策略性科技公司及新創公司提供超過12億歐元的資金: (1)「探路器計畫」(EIC Pathfinder):本計畫經費共2.56億歐元,將補助「有潛力帶領技術突破」的多元學科(multi-disciplinary)研究團隊;每案補助金額不超過400萬歐元。 (2)「轉型器計畫」(EIC Transition):本計畫經費共0.94億歐元;「轉型器計畫」係協助「探路器計畫」、「歐洲研究院概念驗證計畫」(European Research Council Proof of Concept projects)、「展望歐洲計畫」(Horizon Europe)之研發成果銜接創新應用;此計畫每案補助金額不超過250萬歐元。 (3)「加速器計畫」(EIC Accelerator):本計畫經費共6.75億歐元,補助對象為「有能力創造新市場及促進顛覆性技術創新研發」的新創企業及中小企業。此計畫每案補助金額為250萬歐元以下,但若由EIC基金進行投資者,每案補助金額為50萬歐元至1500萬歐元。 除上述補助外,EIC對於研發計畫管理亦扮演積極主動的角色,可協助受補助者連結歐盟境內外資源,形塑良好的創新生態系。

TOP