本文為「經濟部產業技術司科技專案成果」
美國及其他參與國際反勒索軟體倡議(International Counter Ransomware Initiative, CRI)之50個成員(含國家及國際組織),於2023年10月31日至11月1日召開第三次大會,並且發布聲明表示:應積極建立對抗勒索軟體之集體韌性(collective resilience)、共同合作降低勒索軟體之散布能力、追究相關行為人之法律責任、制裁非法資助勒索軟體之組織、與私部門合力防止勒索軟體攻擊。 CRI於2023年之關鍵成果主要可分以下三個面向: 一、加強資安管理能力 對CRI新成員提供指導及戰術培訓,例如由以色列督導約旦,以確保新成員之資通安全。此外,亦發起利用人工智慧打擊勒索軟體之計畫。 二、促進資訊共享 設立可即時更新之資訊共享平台,使CRI成員得以迅速分享資安威脅指標。如立陶宛之惡意軟體資訊共享計畫(Malware Information Sharing Project, MISP)、以色列及阿拉伯聯合大公國之水晶球平台(Crystal Ball platforms)。 三、反制勒索軟體使用人 CRI發布前所未有之共同政策聲明,闡明成員不應支付贖金,且創設成員間共享之加密貨幣錢包黑名單(blacklist of wallets),以便揭露勒索軟體使用人之非法帳戶,並公開與犯罪組織之金流紀錄。另,CRI於2024年起將持續致力發展前述聲明提及之目標,並優先向潛在成員進行宣導,透過提供量身訂做之資安應變能力培訓,滿足潛在成員之需求。
美國專利標示不實之罰金計算美國聯邦巡迴上訴法院在2009年底於The Forest Group Inc. v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292中關於不實專利標示(false patent marking)的懲罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎。美國專利法35 U.S.C. § 292中要求法院對專利資訊標示不實或錯誤之產品或包裝處以最高美金$500的罰金。在此案之前,許多地方法院將35 U.S.C. § 292解釋為罰金之計算是以每一次被告”決定”將產品標示不實專利資訊為基礎 (single penalty for each “decision” to falsely mark products),不論此決定是包含一個或一整批產品。在本案中,聯邦巡迴上訴法院同意地方法院的看法認定被告Forest Group意圖藉不實專利標示企圖欺騙大眾但撤銷地方法院將罰金定為$500之判定,而將目前專利法35 U.S.C. § 292 解釋為罰金是以”每一個”標示錯誤專利資訊的產品為基礎 (penalty for false marking on a per article basis)。 為了防範日後因此案罰金計算方式而造成所謂”標示流氓”(marking trolls) 之興起,聯邦法院於其判決中特別說明其解釋並非要求法院必須將每一標示錯誤專利資訊的產品處以$500美元的罰金。因法條中之罰金是以美金$500為上限,法院有權利權衡各案例背景決定罰款金額。例如,針對大量製造但價錢低廉的產品, 法院可對每一個產品處以極少的罰金。 The Forest Group 一案是美國聯邦巡迴上訴法院第一次針對不實專利標示之罰金提出解釋,直得關注其後續引發反應。廠商也應重新檢視其產品專利標示是否有不實或錯誤之狀況以避免被控標示不實專利資訊而被處以罰款。
美國聯邦通訊傳播委員會將表決是否開放閒置頻譜為釐清開放閒置頻譜(white space)予業者使用是否會產生干擾問題,美國聯邦通訊傳播委員會(Federal Communication Commission, FCC)所屬工程科技辦公室(Office of Engineering and Technology, OET)於上個月就閒置頻譜(white space)開放進行干擾測試,並在2008年10月15日公布結果報告。 工程科技辦公室表示,同時具有頻譜感測(spectrum sensing)以及定位(geo-location)功能之設備在測試中顯示對於既有使用者並不會造成干擾,是以,當美國於2009年2月17日完成無線電視數位化之後,閒置頻譜設備(white space devices, WSDs)應被允許使用於閒置頻譜。於此同時,聯邦通訊傳播委員會主席 Kevin Martin 在記者會中公開表示支持開放閒置頻譜,並宣布美國聯邦通訊傳播委員會將於2008年11月4日的公開會議中就此一議題進行表決。 美國國家廣播業者協會(National Association of Broadcasters, NAB)旋即在2天後向聯邦通訊傳播委員會提出緊急請願(emergency petition),希望聯邦通訊傳播委員會延後其表決時間,並就此一議題進行公共諮詢。國家廣播業者協會同時指出,該報告摘要對於測試過程所蒐集之資料解讀錯誤,國家廣播業者協會認為,根據該測試結果,未經取得執照且僅以頻譜感測技術避免干擾之閒置頻譜設備將會干擾既有的使用者。而非如該報告摘要所稱,應可開放同時具有頻譜感測技術及定位功能之閒置頻譜設備。截至目前為止,聯邦通訊傳播委員會尚未正式決定是否接受國家廣播業者協會之請求延後表決時間。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現