.Akamai 一案改變了邦巡迴法院認定間接侵權的判斷

  2014年Akamai Technologies針對最高法院提起上訴,因此發回聯邦巡迴法院重審,而後上訴法院認為Limelight Networks確實侵害Akamai的專利,Akamai並獲得$ 45.5萬美元的損害賠償。 2006年,Akamai Technologies公司(下稱Akamai)在美國馬薩諸塞州地方法院起訴Limelight Networks(下稱Limelight),指控Limelight侵害Akamai美國專利號6108703。原告Akamai的專利是有效傳送網頁內容的方法專利。而被告Limelight是經營伺服器網路的公司,和Akamai該專利的差別在於Limelight指示用戶完成其中一個修改的步驟。

  本案從2006年一直持續到2014年向最高法院上訴為止,都是依據美國專利法第271條規定直接和間接侵權的概念。在原審認為「實施該方法專利」的侵權行為,是要求實施方要獨立完成該侵權行為,所以Limelight不能被視為直接侵權。又因為Limelight公司並沒有滿足單一實體規則(single-entity rule),控制或指示(control or direction)其實施方完成其他的專利之方法步驟,所以不用負共同侵權責任。

  但上訴聯邦巡迴法院一致贊成Akamai被侵權,並指出如果被告 Limelight知道並使用專利權人Akamai的專利,而且執行大部分的步驟,只保留一項步驟未執行,進而引誘用戶執行該方法專利的最後一個步驟,且用戶真的執行了該最後一步驟, Limelight就構成美國專利法271(b)間接侵權中的引誘侵權。

相關連結
※ .Akamai 一案改變了邦巡迴法院認定間接侵權的判斷, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7005&no=57&tp=1 (最後瀏覽日:2026/02/01)
引註此篇文章
你可能還會想看
德國最新無人機之法規命令(Die Drohnen-verordnug)

  德國在2017年的3月通過了最新的無人機相關法規命令,亦包含傳統模型飛機的部分,並於2017年4月7日生效,新的修正重點如下: 模型飛機如在專用的機場飛行則維持不變,但如果離開專用機場作使用時,則必須安裝記載有所有人姓名及住址的徽章。 在非專用機場使用時,無人機與模型飛機的共通事項: (1) 超過0.25公斤時:必須安裝記載有所有人姓名及住址的徽章。 (2) 超過2公斤時:除前述的徽章外,還必須有特別的有關無人機或模型飛機的專業知識證明;而該知識證明,可以從聯邦航空局(Luftfahrt-Bunderamt)或民間飛行運動協會(Luftsportverband)透過考試取得。 (3) 超過5公斤時:除前述的條件外,需要從各地區航空管理部門(Landesluftfahrtbehörden)追加額外的升空許可(Aufsteigserlaubnis)。 關於操作者的規範: (1) 無人機的操作者,除了在模型飛機基地外,原則上禁止飛行超過100米高,但可向地區航空管理部門提出申請。 (2) 模型飛行器操作者須有專業知識證明。 (3) 無人機與模型飛行器只能在能肉眼可見下飛行。 一般適用規定:無人機與模型飛行器不能阻礙或危害人力駕駛飛行器。 禁止事項: (1) 所有的無人機或模型飛行器不得在敏感區域(例如:警察機關、救難隊、大群民眾所在地、主幹道、航空起降區等)使用。 (2) 無人機與模型飛行器不得於住宅區接收、播送、以及紀錄影片、聲音、或是無線電訊號。   綜合觀察可以發現,德國對於無人機的使用規範(或限制),可以歸結至三 方面,對於使用人的規範、無人機的大小以及使用地點的限制。

Google被遺忘權近期歐洲法院判決趨勢

  德國聯邦最高法院(Bundesgerichtshof, BGH)於今(2020)年7月「VI ZR 405/18」」案中拒絕當事人請求Google刪除有關其健康個資之主張,為2018年歐盟通過一般資料保護規則(General Data Protection Regulation, GDPR)後,德國聯邦最高法院第一件與被遺忘權相關之判決。本案當事人曾為德國一慈善團體之負責人,該團體於2011年陷入財務危機,而當時有報導指稱當事人作為團體負責人,竟稱病不回應媒體訪談。當事人認為上述報導資料有損其名譽,請求Google刪除與其健康個資相關之搜尋結果。德國聯邦最高法院於判決中強調,網路搜尋結果是否須被移除,應衡量相關之基本權利,個案分別認定。本案中大眾知的權利(right to information)優於當事人被遺忘權,故駁回原告之請求,判決Google勝訴。   被遺忘權首見於2014年歐盟判決(Google Spain v. AEPD and Mario Costeja Conzalez),賦予人民要求搜尋引擎移除對自身造成負面影響資訊之權利。GDPR進一步於第17條明文化此一權利之內涵,於個資依原本蒐集之目的已不具必要性、當事人撤回同意、當事人反對個資自動化處理、當事人個資遭不法侵害、依照法律規定應刪除個資及青少年與兒童個資等六種情形,當事人得請求資料控制者刪除個資。   法國近期亦有被遺忘權相關法院判決。法國最高行政法院(Conseil d’État)於今(2020)年3月撤銷法國國家資訊自由委員會(Commission nationale de l’informatique et des libertés, CNIL)於2016年3月對Google作出十萬歐元之裁罰,因其僅刪除存在於法國網域內之當事人個資,而未及於全球網域。法國最高行政法院於本判決重申2019年歐盟法院(European Court of Justice)於Google v. CNIL之立場,認定Google履行被遺忘權之網域範圍僅適用於歐盟地區,而不及於全球,撤銷CNIL於2016年對Google作出之裁罰。

中國大陸財政部及科技部印發《國家重點研發計畫資金管理辦法》

  於2016年12月30日,中國大陸財政部及科技部為規範國家重點研發計畫管理,切實提高資金使用效益聯合發佈了《國家重點研發計畫資金管理辦法》。   該計畫以支援解決重大科技問題為目標,以“優化資源配置、完善管理機制、提高資金效益”為重點,辦法全文共8章57條,根據國家重點研發計畫特點,從預算編制到執行、結題驗收到監督檢查,針對全過程提出了資金管理的要求,明確《辦法》制定的目的和依據、重點研發計畫資金支援方向、管理使用原則和適用範圍,就重點專項概預算管理、專案資金開支範圍、預算編制與審批、預算執行與調劑、財務驗收、監督檢查等具體內容和流程、職責做了明確規定。   與原科技計畫資金管理辦法相比,《辦法》主要有以下變化: 1.建立了適應重點研發計畫管理特點的概預算管理模式。 2.遵循科研活動規律,落實“放、管、服”改革。適應科研活動的不確定性的特點,《辦法》堅持簡政放權,簡化預算編制,下放預算調劑許可權。 3.突出以人為本,注重調動廣大科研人員積極性。   為推動辦法有效落實,財政部及科技部並要求相關部門、專案承擔單位需要共同做好以下工作: 1.相關主管部門應當督促所屬承擔單位加強內控制度和監督制約機制建設、落實重點專項項目資金管理責任。 2.財政部、科技部將組織開展宣傳培訓,指導各有關部門和單位開展學習,全面提高對《辦法》的認識和理解,為政策執行到位提供保障。 3.科技部、財政部將通過專項檢查、專項審計、年度報告分析、舉報核查、績效評價等方式,對專業機構、專案承擔單位貫徹落實《辦法》情況進行監督檢查或抽查。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP