德國聯邦經濟暨能源部(Bundesministerium für Wirtshaft und Energie)、德國聯邦工業聯盟(Bundesverband der Deutschen Industrie)、德國工業與商務部(Deutsche Industrie- und Handelskammertag)及德國工藝中心(Zentralverband des Deutschen Handwerks)針對共同之目標擬定中型企業發展政策。該規劃於2015年7月23日柏林提出。該規劃重點為以下五個方針:
1. 企業精神培育(Gründergeist):
自1995至2014年德國新創企業的成長銳減30%。為要克服此問題,應讓德國學童在學校時就有「創業家」此一職涯選項。年輕的新創企業需要持續提升與企業合作與互動,並給予創新之顧問補助,像是新創顧問諮詢上的服務(該計畫名稱為Gründer Coaching Deutschland)。針對目前已經成立之中小型企業,相關補助及服務將自2016年會提出。
2. 數位化進程(Digitalisierung):
為提升中型企業的科學技術轉移,透過該計畫預計將在今年全德國新設立至5座技轉中心(Technologietransfer)。透過該中心,各個企業及工藝業者可得取有關產業面現狀發展、新興科技及商業模式的最新訊息,為讓其裝備成具數位化能力的業者。
3. 融資(Finanzierung):
透過歐盟投資及歐洲復甦基金(ERP/EIF)新興政策之發佈,將注入50億歐元用於輔助快速成長、資本集中之企業,以3至4百萬歐元的幅度做補助。此透過與歐盟投資銀行共同聚集的資金,將於2015年提供給企業申請。此次融資政策係歐盟投資及歐洲復甦基金從10億提升至17億歐元。
4. 勞工支配(Fachkräfte):
德國勞工的質量與優勢將透過「聯盟教育培訓計畫2015-2018(Allianz für Aus- und Weiterbildung 2015-2016)」做提升。每位年輕學子在就學期間,就應透過學校的輔助認清其就業路線,以助未來專業領域培訓及發展。「輔助中小型企業得取切合相關職業培訓及外來勞動力引入」補助計畫導入,目的亦係為讓德國勞動力更具優勢及競爭力。
5. 行政成本降低(Bürokratieabbau):
透過減免官僚程序法(Bürokratieentlastungsgesetz)的導入,將針對未來企業會計、紀錄、統計數據公開及回報的要求進行修改。此一法的導入將可讓德國中型企業7.44億歐元行政成本的減免。為了讓新創企業能夠更容易的開始營運,政府部門亦將更進一步的與業者接觸互動並連結,輔助新創企業中遇到創業程序上的服務及指導。透過相關行政程序的電子化管理,將可讓德國及至歐盟透過該新的管理標準省去過多的行政成本,並優化創業流程。
美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下: 1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。 2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。 3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。 搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。
日本新增藥品服用法發明專利制度2009年5月,在日本「智慧財產戰略本部」所屬「以智慧財產進行競爭力強化專門調查委員會」(知的財産による競争力強化専門調査会)下所成立之「先進醫療專利檢討委員會」(先端医療特許検討委員会),針對日本在先進醫療技術領域的專利保護制度進行檢討,其中提出建言,建議修訂專利審查基準,將以下的醫療相關發明類型納入可獲專利保護之發明標的:1.既有醫藥品用法或用量之改良,其可以大幅改善藥物副作用或提升服藥後生活品質,同時其效果超越專家所能預想之程度;2.輔助醫師進行最終診斷之人體有關資料收集方法,例如核磁共振攝影(MRT)或電腦斷層掃描(CT)等技術相關發明。上述建言之後被納入智慧財產戰略本部所公佈之「智慧財產推進計劃2009」(知的財産推進計画2009)中,列為2009年度日本政府應執行之智慧財產權相關重要政策措施其中的一項,而前者便是所謂的藥品服用法發明專利。 這而日本特許廳根據上述政策決議,在2009年8月提出依委員會建議所修訂之專利審查基準修訂草案,而在完成徵詢公眾意見的行政程序後,於2009年11月正式公告成為新版的專利審查基準。 其中在「醫藥發明」部分,新版專利審查基準言明,若醫藥發明其成分與先前技術的醫藥品並無不同,同時適用之疾病症狀亦無不同,但其因為其所揭示的特定用法或用量,致使其在適用於特定疾病時會產生不同之效果時,這樣的發明仍會被認定為具有新穎性。而若此新用法或用量之醫藥發明相較於先前技術,其所產生之更有利效果,為發明當時相關技術領域具有通常知識者所可預期者,則此發明將不具備可專利性要件所要求之進步性,而無法獲得專利保護;反之若此新用法或用量之醫藥發明產生之有利效果,為超出發明當時相關技術領域具有通常知識者所可預期範圍之顯著效果,則此發明之進步性便會被肯認。因此,新版專利審查基準不僅言明了新用法或用量之醫藥發明可專利性要件審查之判斷標準,也明確將此類型之發明納為可受專利保護之標的。
美國USPTO建議加強非法定重複專利之期末拋棄聲明,避免藥物專利叢林美國專利商標局(United States Patent And Trademark Office, USPTO)於2024年5月10日提議37 C.F.R §1.321修法草案並徵求公眾意見,旨在針對「非法定重複專利」(Nonstatutory-type double patenting)加強專利權「期末拋棄聲明」(Terminal Disclaimer)之要求,以減輕專利叢林現象。 專利權期末拋棄聲明係為避免專利申請人對於申請中,或已取得專利權之前申請案,利用些微變化再次申請專利,構成非法定重複專利,藉此延長專利期限。故現行規定要求於後案申請時應聲明專利權期限與前申請案同時到期,否則將不核准專利之申請。 USPTO提議於聲明中新增一項要求,亦即申請人應聲明後案申請之專利未藉由期末拋棄聲明直接或間接地綁定無效專利,否則同意所申請之專利無法執行(enforceable)。換言之,與後案申請專利所綁定的前案專利,若已被美國聯邦法院或USPTO判定為不具有專利性、專利無效,或是因技術實行上困難而放棄專利者,則透過專利權期末拋棄聲明綁定之專利將全部無法執行。藉此盼能有效去除產業競爭對手間濫用專利制度而建立龐大專利組合之行為模式,並促進研發創新和公平競爭。 此項修法草案被美國法學界認為是針對「藥品專利」而來,亦即USPTO欲藉此回應美國拜登政府致力打擊藥價之政策,並減輕長期受到關注之藥品專利叢林現象,以促進學名藥進入市場,達到降低藥品價格之目的。
醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議 資訊工業策進會科技法律研究所 2023年05月31日 過去,醫療科技公司僅專注於開發針對醫療問題的硬體解決方案,近年這些企業則致力於轉型開發收集及利用大量病人、資料提供者資料之產品,而轉變成資料平台公司,而更可以全面了解病人及客戶生活習慣及健康狀況。 其中許多解決方案均利用人工智慧(Artificial Intelligence, AI)及機器學習(Machine Learning, ML),相較傳統上研發成果多為硬體設備,現今則轉變成出現大量軟體解決方案,保護研發成果之方式將發生改變,如何選擇合適的智慧財產權保護研發成果成為企業重要課題,此亦影響企業如何做智慧財產布局及擬定公司相關經營策略,因此建議企業——尤其是開發醫療資訊平台之醫療科技公司,特別是致力於開發醫療器材軟體(Software as a Medical Device, SaMD)、醫療設備嵌入式軟體(Software In a Medical Device, SiMD)及應用於醫療技術中的人工智慧等新興領域時可以參考以下提供之思考方向選擇對於企業發展最適切之智慧財產權保護態樣。[1] 研發成果如欲獲得專利保護,該發明必須係獨一無二且可以傳授的——即人們不能將自然發生或不可再現的事物申請專利,因為發明需透過專利以清楚的方式概述,並明確定義專利內容,並向公眾揭露,以便於申請人取得專利、並於專利期限屆滿後(專利保護期限因各國法規、專利類型而將有所不同,建議企業應了解欲布局之國家相關法規規定,如台灣之發明專利[20年]、新型專利[10年]、設計專利[15年]),使大眾得藉以實施該技術內容。[2] 在美國,專利係由美國專利商標局賦予所有權人於一定期間內壟斷其發明之權利,即美國聯邦法律更使專利所有權人在專利權效期內得以禁止他人於該期間內於美國製造、使用、銷售或進口至美國這項已獲得專利保護之發明,此給予專利權人一個得以建立一個阻止他人進入市場的巨大障礙,可防止競爭及保護專利權人可以自由實施該權利。[3] 因專利有上述特性,文章作者建議,如裝置(device)、該裝置使用之軟體,對於從事新藥開發之藥廠,於保護新穎成分(New Chemical Entities)、相關之治療方法及人工智慧相關發明較適合以專利保護。[4] 營業秘密係指資訊擁有者已盡合理努力保密,且不為公眾所周知或非可被公眾輕易探知而具有獨立經濟價值的,任何形式及類型之資訊。合理努力可能包括(但不限於),要求員工簽署保密協議、定期提醒員工其負有保密義務(如:針對職務不同/所從事不同工作之員工,保密義務內容、程度、時間是否有所不同?)、踐行必要而知悉(need to know) 原則(如:執行不同工作之人員是否可互相存取各自的資料? 抑或僅能存取自己工作所需之資料?)、佈署IT安全措施或辦公室安全措施之狀況(如:是否有門禁?資料如有異常存取狀況時是否有示警機制?)並須即時調查及採取行動打擊涉及盜用營業秘密之行為(如:是否有相關通報不當使用營業秘密之管道及監控機制?)[5] 在美國,傳統上營業秘密之保護是結合各州法律而成,除了紐約州及北卡羅萊納州以外,所有州都頒布了其特有版本的《統一營業秘密法》(Uniform Trade Secrets Act, UTSA)——係一項1979年頒布的統一法案。於2016年,國會又頒布了《保護營業秘密法Defend Trade Secrets Act, DTSA》,該法案保障當事人於聯邦法院提起營業秘密訴訟之權利,且只要促進犯罪行為之行為發生於美國,當事人即可於國外進行訴訟,此外,《統一營業秘密法》中規定營業秘密包含公式、模式、彙編、程式、設備、方法、技術或過程。而依《保護營業秘密法》(Defend Trade Secrets Act, DTSA),營業秘密可為任何形式,無論係以物理、電子、圖形、攝影或書面形式儲存、編輯或紀錄之財務、商業、科學、科技、經濟或工程資訊均為營業秘密之範疇,因此,營業秘密之適用範圍較廣,於美國甚至抽象之想法均可受營業秘密保護。[6] 與僅提供有限保護期限之專利有別,如欲獲得營業秘密之保護,僅需資訊持續保密並存在並持續存有價值,該資訊即會持續受到營業秘密保護並擁有無限的有效期限,亦即,只要該資訊仍為秘密,即受到營業秘密之保護。如:可口可樂已將其配方作為營業秘密保護了130多年之久。惟與專利不同的是營業秘密一但被公眾周知或得以透過適當方式獨立開發(如競爭對手自己獨立開發而產出之資訊),就將失去營業秘密之保護。[7] 因為營業秘密之特性,諸如蛋白質結構、客戶清單、機器學習演算法、原始碼、化學製程參數(如:會產生化學反應之溫度或壓力)、甚至是醫療科技公司近年致力經營的人工智慧領域所產出的人工智慧、新的模型訓練方法、優化模型參數、消極專有技術(如:不該做什麼)。[8] 惟選擇專利抑或營業秘密之方式保護其研發成果將視企業的業務為何決定,如缺乏透明度之產業可能較適合以營業秘密方式保護,而非專利。例如:網路安全公司可能傾向於營業秘密保護,因為申請專利揭露其機密安全演算法可使競爭對手開發競爭產品或使駭客進行量身訂製之攻擊。相較之下,製造容易檢測、針對消費者之電子產品之企業更依賴專利保護,製造具有行業標準化品質之產品之企業亦是如此。[9] 總體而言,是否容易被逆向工程將會是決定以專利或營業秘密保護之關鍵性調查方式。因申請專利必須揭露細節事項,將對廣泛保護資料為基礎之軟體(且有使用人工智慧或機器學習)較具挑戰性,故專利較適合保護裝置(device)及會相互作用之實體產品和軟體。而營業秘密則要求資料所有人無限期地維持秘密性,亦須注意自己的想法獲得他人關注時遭仿效之風險,故較適合造價高或難以仿效的軟體、製造方法或產品。[10] 而對於生技醫療公司而言,其應考量使用混和策略以保護人工智慧相關之創新,如:專有之原始和訓練資料、模型之優化參數、將專有技術用於訓練模型及其他難以進行逆向工程之人工智慧相關的此類機密資訊,可能較適合用營業秘密保護,同時該技術的其他方面,如人工智慧系統或使用其開發之藥物則可透過專利保護。[11]惟不論企業決定要將該資訊做為營業秘密保護或申請專利保護,企業對於研究人員發表相關資訊的行為均應審慎評估,避免因揭露而喪失專利之新穎性或營業秘密之秘密性的情形。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Kristin Havaranek, Martin Gomez, Matt Wetzel, Steven TJoe & Stephanie Philbin, Top 5 IP Considerations for Medtech Companies Transitioning To Data-enabled Product Solutions (2023), https://medcitynews.com/2023/01/top-5-ip-considerations-for-medtech-companies-transitioning-to-data-enabled-product-solutions/ (last visited June 1,2023). [2]John Quinn, Protecting Inventions Through Patents and Trade Secret (2023), https://www.newsweek.com/protecting-inventions-through-patents-trade-secrets-1788352 (last visited May 30, 2023). [3]Id. [4]Charles Collins-Chase, Kassanbra M. Officer & Xinrui Zhang, United States: Strategic Intellectual Property Considerations For Protecting AI Innovations In Life Sciences (2023), https://www.mondaq.com/unitedstates/trade-secrets/1276042/strategic-intellectual-property-considerations-for-protecting-ai-innovations-in-life-sciences (last visited May 30, 2023) [5]Id. [6]John Quinn, supra note 2. [7]Id. [8]Collins-Chase et al., supra note 4. [9]John Quinn, supra note 2. [10]Havranek et al., supra note 1. [11]Collins-Chase et al., supra note 4.