美國國會圖書館(Library of Congress)依據著作權法(Digital Millennium Copyright Act,簡稱DMCA)第1201(a)(1)條授權,於2015年10月28日發布著作權法相關之例外規則(final regulations),明定10項與使用者權益相關的行為屬於著作權法保障之例外情況,將納入合理使用(fair use)範圍,不再視為侵害原著作權人之權利。上述合法的科技使用行為包含:
1.為了教育及其他非商業用途之目的,對視聽媒體所為之重製行為。
2.為了讓視覺或其他功能障礙者使用,對已購買之電子書所為之破解或形式轉換行為。
3.為了連結其他電信公司之網絡,針對手機及其他行動裝置之應用程式,所為之解鎖行為(unlocking)。
4.智慧型手機及其他行動裝置之越獄(jailbreaking)行為。使用者得利用外部工具取得系統最高權限,且不受原系統限制而安裝或解除安裝合法軟體。
5.智慧型電視之越獄行為。使用者得利用外部工具取得系統最高權限,不受原系統限制而安裝或解除安裝合法軟體。
6.汽車軟體之診斷、修理或改裝行為。車主或修車廠等人員得自行診斷、修理或改裝汽車軟體,不限於僅有汽車原廠得檢測或變更軟體。
7.為了促進電腦軟體的安全性,針對個人擁有之消費性家電、車輛及醫療裝置所為之軟體相關安全研究與測試行為。
8.某些需要透過與官方伺服器連線方能正常運作之遊戲軟體,於官方永久結束營運之後,使用者可自行建立伺服器,供擁有合法軟體的使用者繼續使用,但此項條款不包含主要內容儲存於官方伺服器之遊戲。
9.使用者可修改軟體程式,並使用其他的3D列印原料,不限於原廠預設之原料。
10.病人取得自身醫療裝置或監視系統數據之行為。本例外規則通過後,病人可合法取得自身醫療裝置之數據,而不違反著作權法之科技保護措施,不再受限於原先僅有醫院或醫療裝置公司可取得植入式醫療裝置之數據。
美國著作權法授權國會圖書館每三年發布一次例外規則,用以改善著作權法之「科技保護措施」的負面影響,並維護公眾接觸資訊之公共利益。上述第6至10項為本次新增之項目,但本次例外規則並未通過視聽著作空間轉換(space-shifting)及格式轉換(format-shifting)之行為、電子書專用閱讀器之越獄行為、或遊戲機(Video Game Consoles)之越獄行為。
針對開放汽車軟體之破解,某些汽車製造業者基於安全理由表示反對,但消費者方面,表達贊成意見人數明顯多於反對意見者。尤其是福斯汽車(Volkswagen)設計作弊程式通過廢棄排放檢驗的事件發生後,開放消費者得自行診斷、修理或改裝汽車軟體,將能降低此類弊端發生之機率,讓具有汽車軟體相關知識的消費者有機會能檢測汽車本身軟體是否符合法令規範或有任何異常。
歐盟於2015年5月9日在拉脫維亞的里加舉辦了為期一週之「eHealth Week」研討會,包含由歐盟輪值理事會主辦之高階eHealth會議,以及由歐洲HIMSS (Healthcare Information and Management Systems Society)主辦之「WoHIT (World of Health IT Conference & Exhibition)」兩大活動,而2015歐洲mHealth高峰會為其中備受矚目的重要主題活動。該高峰會以推動歐洲mHealth進程之執行為領導思考核心,相關利害關係者(包括公部門、ICT產業、健康保健專業學者)於5月12日以mHealth綠皮書公眾諮詢結果為基礎,針對歐盟目前執行中以及未來可能採取之政策為討論,主要議題包括:1.所蒐集資料之隱私與安全保護。2.生活康樂型apps產品之安全性與品質管控。3.網路經營者對於mHealth市場之進入障礙。 針對資料之隱私與安全保護議題,公眾諮詢結果顯示,關鍵問題在於mHealth apps蒐集使用者資料是否有足夠的隱私與安全保障措施?與會者並認為此問題在資料的第三人再利用情形尤為重要。對此歐盟執委會表示將展開就mHealth apps訂定以產業為主導、範圍涵蓋資料隱私與安全性之行為守則,以建立使用者對mHealth apps之信任感,並提升app開發者對歐盟資料保護法規之遵法意識。 針對生活康樂型apps(包括健康照護相關app)產品之安全性與品質管控議題,透過與會者現場意見調查顯示,認為健康照護相關apps之安全性、品質與可靠性由於欠缺臨床佐證,導致就apps的目的與功效會有錯誤的宣示。值得注意的是,制定法規控管並非多數意見,大多數與會者認為以訂定指引或標準的方式,作為生活與康樂型apps的安全性與品質之依循方針較為妥適。對此歐盟執委會表示會持續跟進此議題並與相關利害關係者討論下一步之行動。 針對網路經營者進入歐盟mHealth市場議題,與會者認為網路經營者將面臨複雜的進入障礙,諸如歐盟相關法規架構的不清與零散、mHealth方案與設備的互通性與開放標準的欠缺等。歐盟執委會明確表示,支持網路經營者進入mHealth市場,目前歐盟正在進行的「Startup Europe」等相關倡議措施,即是以強化網路及資通訊業者商業環境為目的,提供網路經營者法規諮詢、投資媒合、商業模式育成等協助,以降低網路經營者所面對之市場進入門檻並有機會展現其新創能量。
世界經濟合作暨發展組織(OECD)修正「隱私保護及個人資料之國傳輸指導指引」1980年09月發布的「隱私保護及個人資料之國傳輸指導指引」,當中的8大原則對個人資料保護的法制產生深遠的影響,但隨技術發展,資料傳遞所產生的風險遠較於1980年代來得複雜。2013年所發布的內容,風險管理及為全球資料流通的互動性為兩大主軸,因此,在指引中納入新的概念,包含1.國家隱私策略:有效的隱私法制是不可或缺的,但在今日國家應該將隱私保護放在更高的戰略位置、2.隱私管理程序:(以個人資料)為核心服務的機制應系統化的保護隱私、3.資料安全漏洞通知:涵蓋有權者及各別個體的通知。 在指引第一章附件的第三部份-責任的履行,增加資料控制者(data controller),應有管理程序以符合上述的原則,該管理程序需包含資料風險的評估、內部監控、通知主管機關等要求;第五個部份-國家實施則新增加隱私主管機關的設立、考量不同角色(如:資料控制者)所應遵循的行為、考量其它的配套措施,如技術、教育訓練等。 在OECD的成員國,如:日本,已開始向該國國內說明2013年版的指引,但亦有部分會員國,如:加拿大,由於指引涵蓋公部門及私部門,加拿大亦討論如何與該國的資訊近用法(Access to Information Act) 及隱私權法 (Privacy Act)建構一個完善的適用模式。指引對於未來國際資料傳輸及管理程序的建置,必然產生結構性的影響,值得持續關注。
世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引世界衛生組織(World Health Organization, WHO)於2021年6月底公布「人工智慧於健康領域之倫理與治理」(Ethics and governance of artificial intelligence for health)指引。目前人工智慧於在改善診斷、治療、健康研究、藥物開發及公共衛生等健康領域皆有廣泛之應用與前景,而該指引首先指出人工智慧應用於健康領域中最相關之法律與政策外,並強調相關應用皆須以「倫理」及「人權」作為相關技術設計、部署與使用之核心,最後則提出人工智慧應用於健康領域之六大關鍵原則: 一、保護人類自主性(autonomy):本指引認為人類仍應該掌有關於醫療保健系統之所有決定權,而人工智慧只是輔助功能,無論是醫療服務提供者或患者皆應在知情之狀態下作決定或同意。 二、促進人類福祉、安全與公共利益:人工智慧不應該傷害人類,因此須滿足相關之事前監管要求,同時確保其安全性、準確性及有效性,且其不會對患者或特定群體造成不利影響。 三、確保透明度、可解釋性與可理解性(intelligibility):開發人員、用戶及監管機構應可理解人工智慧所作出之決定,故須透過記錄與資訊揭露提高其透明度。 四、確立責任歸屬(responsibility)與問責制(accountability):人工智慧在醫學中所涉及之內部責任歸屬相當複雜,關於製造商、臨床醫師及病患間相關之問責機制之設計將會成為各國之挑戰,故須存在有效之機制來確保問責,也應避免責任分散之問題產生。 五、確保包容性(inclusiveness)與衡平性(equity):應鼓勵應用於健康領域之人工智慧能被廣泛且適當地使用,無論年齡、性別、收入及其他特徵而有差別待遇,且應避免偏見之產生。 六、促進具適應性(responsive)及可持續性之人工智慧:人工智慧應符合設計者、開發者及用戶之需求與期待,且能充分具適應性之回應且符合使用環境中之要求。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」