世界智財組織尋求保護來自傳統知識與遺傳資源的產品

  長久以來國際藥廠從大量販售的藥物中獲取上億元的營收,例如抗癌藥物與抗瘧藥物,均是萃取自中國的草本植物,但是這些擁有藥物傳統知識與遺傳資源的族群部落(the community),卻只得到相對微薄的報酬。為此,世界智慧財產組織(The World Intellectual Property Organization)已經在過去五年中力圖達成將利益擴及到提供傳統知識與遺傳資源的族群部落。

  許多先進國家到非洲、亞洲等地方蒐尋具有療效的植物後,回實驗室進行研發萃取其物質後做成藥物,但卻從來沒有主動的揭露其來源,也不曾主動的回饋其獲利給那些藥廠從中獲得藥物植物的族群部落。開發中國家已試著要去制止這非法的竊用傳統知識的行為。

 
  但由於傳統知識是累積的,因此傳統知識的保護也面臨到如何認定其於何時已存在的困難。因此傳統的智慧財產保護體系對於不能確認個別權利人與權利標的範圍的傳統知識無法提供保護。

  不過,世界智慧財產組織表示藥廠已開始關心並參與傳統知識利用的協議,因為這些投資億元於研發而已有成功結果的藥廠,並不希望他們處於一個法律上不確定的狀態。

相關連結
※ 世界智財組織尋求保護來自傳統知識與遺傳資源的產品, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=708&no=55&tp=1 (最後瀏覽日:2025/10/09)
引註此篇文章
你可能還會想看
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營

日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

世界經濟合作暨發展組織(OECD)修正「隱私保護及個人資料之國傳輸指導指引」

  1980年09月發布的「隱私保護及個人資料之國傳輸指導指引」,當中的8大原則對個人資料保護的法制產生深遠的影響,但隨技術發展,資料傳遞所產生的風險遠較於1980年代來得複雜。2013年所發布的內容,風險管理及為全球資料流通的互動性為兩大主軸,因此,在指引中納入新的概念,包含1.國家隱私策略:有效的隱私法制是不可或缺的,但在今日國家應該將隱私保護放在更高的戰略位置、2.隱私管理程序:(以個人資料)為核心服務的機制應系統化的保護隱私、3.資料安全漏洞通知:涵蓋有權者及各別個體的通知。   在指引第一章附件的第三部份-責任的履行,增加資料控制者(data controller),應有管理程序以符合上述的原則,該管理程序需包含資料風險的評估、內部監控、通知主管機關等要求;第五個部份-國家實施則新增加隱私主管機關的設立、考量不同角色(如:資料控制者)所應遵循的行為、考量其它的配套措施,如技術、教育訓練等。   在OECD的成員國,如:日本,已開始向該國國內說明2013年版的指引,但亦有部分會員國,如:加拿大,由於指引涵蓋公部門及私部門,加拿大亦討論如何與該國的資訊近用法(Access to Information Act) 及隱私權法 (Privacy Act)建構一個完善的適用模式。指引對於未來國際資料傳輸及管理程序的建置,必然產生結構性的影響,值得持續關注。

美國科羅拉多州通過《人工智慧消費者保護法》

2024年5月17日,科羅拉多州州長簽署了《人工智慧消費者保護法》(Consumer Protections for Artificial Intelligence Act,Colorado AI Act,下簡稱本法),其內容將增訂於《科羅拉多州修訂法規》(Colorado Revised Statutes,簡稱CRS)第6篇第17部分,是美國第一部廣泛對AI規範的法律,將於2026年2月1日生效。 本法旨在解決「高風險人工智慧系統」的演算法歧視(Algorithmic Discrimination)的問題 ,避免消費者權益因為演算法之偏見而受到歧視。是以,本法將高風險AI系統(High-risk Artificial Intelligence System)定義為「部署後作出關鍵決策(Consequential Decision)或在關鍵決策中起到重要作用的任何AI系統」。 而後,本法藉由要求AI系統開發者(Developers)與部署者(Deployers)遵守「透明度原則」與「禁止歧視原則」,來保護消費者免受演算法歧視。規定如下: (一)系統透明度: 1.開發者應向部署者或其他開發者提供該系統訓練所使用的資料、系統限制、預期用途、測試演算法歧視之文件以及其他風險評估文件。 2.部署者應向消費者揭露高風險人工智慧系統的預期用途,也應在高風險人工智慧系統做出決策之前向消費者提供聲明,聲明內容應該包含部署者之聯絡方式、該系統的基本介紹、部署者如何管理該系統可預見之風險等資訊。 (二)禁止歧視: 1.開發者應實施降低演算法歧視之措施,並應協助部署者理解高風險人工智慧系統。此外,開發者也應該持續測試與分析高風險人工智慧系統可能產生之演算法歧視風險。若開發者有意修改該系統,應將更新後的系統資訊更新於開發者網站,並須同步提供給部署者。 2.部署者應該實施風險管理計畫,該風險管理計畫應包含部署者用於識別、紀錄降低演算法歧視風險之措施與負責人員,且風險管理計畫應定期更新。在制定風險管理計畫時,必須參考美國商務部國家標準暨技術研究院(National Institute of Standards and Technology, NIST)的《人工智慧風險管理框架》(AI Risk Management Framework, AI RMF 2.0)與ISO/IEC 42001等風險管理文件。 美國普遍認為科羅拉多州的《人工智慧消費者保護法》為目前針對人工智慧系統最全面之監管法規,可作為其他州有關人工智慧法規的立法參考,美國各州立法情況與作法值得持續關注。

基因資訊醫療運用與業務過失

TOP