美國司法部(DOJ)宣布召開一區域形會議,目的在建立國際性的智慧財產權犯罪執法網絡(IPCEN),尋找建立一雙邊合作協議,以打擊日益重大的智慧財產犯罪。該會議參與人除美國司法部、國務院、及美國專利商標局官員外,主要為亞洲各國智權執法人員,包含高階警察、海關官員、及檢察官,約七十餘人;上述亞洲各國包含中國、澳洲、汶萊、柬埔寨、印尼、日本、寮國、菲律賓、新加坡、南韓、泰國、及越南等十餘國家。 智權犯罪執法網絡(IPCEN)主要功能有二:一為成立論談空間,使各國執法人員能傳遞有關打擊”智權犯罪及仿冒品”的調查及起訴的成功策略案例;二為加強各國間溝通管道,以有效協調及處理跨國性的智慧財產侵權起訴案件。 對於在亞洲日益嚴重的?版及商標仿冒犯罪,此次會議中討論如何有效加強執法力時,各國代表多承認有效的智慧財產權起訴取決於被害人及執法單位的合作。 各國代表並說明智慧財產犯罪的嚴重性及建立國際性的智權犯罪執法網絡的重要:「保護美國及世界各國的智慧財產權為各國司法單位首要的任務之一,而在智權犯罪最嚴重的區域,建立智慧財產犯罪執法網絡(IPCEN)更是重要的執行步驟,以有效保護世界各國的智慧財產權」。「仿冒品不僅損害世界經濟體系,更嚴重威脅到各國人民的健康及安全,惟有建立一國際性的網絡協定,才能打擊嚴重的智慧財產犯罪」。「仿冒品,?版品及游走各邊境及海關政策漏洞已造成權利人近百億元損失,而IPCEN能使各國執法單位相互結盟,將可保障合法權利人權利,避免侵權者藉由跨國犯罪免責及獲取不當利益」。 美國司法部已派駐一經驗豐富的聯邦檢察官於美國駐泰國大使館,專責推動此網絡建立的執行,以保護智慧財產權人之權益。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
日本經濟產業省公布「再生能源導入促進關聯制度改革小委員會報告書」日本經濟產業省「促進再生能源關連制度改革小委員會(再生可能エネルギー導入促進関連制度改革小委員会)」於2016年2月5日公布了報告書,該報告書集結了自2015年9月以來,共計13次的討論整理,未來FIT制度改革方向,將以此為根基。 提出該報告的目的在於,達成最加能源構成方案(エネルギーミックス)之目標,於2030年導入22-24%之再生能源,冀望在最大限度導入再生能源,並與抑制國民負擔之間調合並存。 該報告提出五大修正制度方針,分別簡述如下: (一)針對未運行案件對應修正認證制度 (1) 進一步加強撤銷認證制度之報告徵收及聽證程序。 (2) 創設新認證制度,應確認該發電事業的實施可能性後,才得認定為FIT。 (二)促進長期安定發電的配套措施 (1) 事業者應做適當的檢查及維修、發電量定期報告,制定廢棄及回收等應遵守事項。若有違反情事,主管機關得發出改善命令或是取消認定資格。 (2) 確認並遵守所涉及之土地使用條例、公告認定資訊、提供地方政府建構計畫內容。 (三)導入成本效率 (1) 設定中長期之「收購價格」目標。 (2) 以Top Runner等方式決定具備「成本效率」之收購價格,亦即以最佳方式選擇。 (3) 賦課金減免制度為一個可持續的機制,同時透過活用賦課金以確保基金,並確認對象事業的節能方案及對國際競爭力的影響等(檢討減免率)。 (四)擴大導入開發週期長(リードタイムの長い)之電力 (1) 開發週期較長之電力,預先於數年前決定認證案件之收購價格。 (2) 進行環評期間減半(通常為3~4年)等必要規制改革。 (3) 於FIT認證前,得申請接續系統。 (4) 針對不同電力的挑戰檢討對應的支援方法 (五)擴大導入電力系統改革之優勢 (1) 基於「廣域系統整備計畫」,計畫性地推動整備廣域系統。 (2) 對應區域系統之限制,公告系統資訊以及建設費用之單價。此外,繼續活用投標邀請規則(入札募集ルール),共同負擔系統升級費用。 (3) FIT收購義務人由零售事業者轉換為輸配電事業者,並促進全國區域間電力調配(広域融通)之順暢性。收購後之電力,得經由交易市場外直接輸送予零售事業者。 (4) 整備再生能源事業者間公平之輸出控制規則(公平な出力制御ルール)。
美國「刑事鑑識演算法草案」美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容: 一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。 二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。 三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。 四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。 五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。