歐盟電信網路新修規章通過網路中立條款

  2015年10月27日歐洲議會通過電信網路新修規章(Regulation 2015/2120),內容包括網路中立(Net Neutrality)條款,該規章將拘束歐盟全體會員國之資訊通信法規,並確立歐盟境內之網路中立原則。在本次立法之前,歐盟境內未建立統一的網路中立法規,僅荷蘭、斯洛維尼亞及芬蘭制定國內網路中立法規。

  網路中立係指各種網路應用、內容或服務,均應受到平等對待,網路服務業者 (Internet Service Provider,以下簡稱ISP)不得任意實施差別待遇,例如攔阻(blocking)、延後傳送順序或降速(throttling)等。依據歐盟新修規章第3(3)條規定,ISP應平等處理所有網路流量,但同條之例外條款允許ISP在特定條件下,採取合理的流量管制措施。ISP流量管制之標的必須係基於因技術上服務需求之差異,所客觀形成之不同類別,換句話說,ISP不得因商業考量而對個別網路使用者產生差別待遇,僅得針對客觀的類別進行流量差異管制,例如點對點(Peer-to-Peer,P2P)傳輸軟體下載與語音電話,因流量傳輸需求不同,屬於不同的類別,是故,對於這兩種類別可採取不同之傳輸速度。同時,ISP的管制措施必須符合透明、非歧視性及比例原則。ISP亦不得監看特定內容,而管制期間不得超過必要之期限。

  除了上述因客觀類別所採取之差別待遇之外,該規章亦賦予ISP得因特定法定事項而採取流量管制,該法定事項包括:

1.基於法律規範或執法需要而進行管制:包括符合歐盟法或會員國國內法之規定、以及法院或行政機關之命令或授權。
2.為了維持網路服務之完整性及安全性所採取之管制,包括網路、透過網路提供之服務或終端使用者(個人及企業)之終端設備。
3.防止即將產生之網路塞車或減輕網路塞車情況,但其前提為相同之網路服務類別必須給予平等之待遇。

  歐盟之新修規章試圖在網路中立原則下,建立合理的管制措施規範。但該規章仍存有一些爭議性,包括:

1.為了讓醫療用途等網路流量能被優先處理,該規章允許ISP針對類別差異給予不同傳輸速度。但類別之區分方式仍不夠明確,可能導致ISP得恣意實施差別待遇。
2.法條未限制網路公司與電信業者結盟,ISP可依據商業契約讓某些網路使用不計入資費的使用量(zero rating),可能導致大公司占據競爭優勢,不利新興公司的發展。
3.有關加密資料之類別決定,ISP須進行解密查看才知道該加密資料符合何種傳輸類別,但此舉會引發資料保護之問題,因此加密資料之傳輸問題仍尚待解決。
4.為了促使網路暢通,該規章允許網路塞車時或有塞車之虞時,ISP可進行流量管制。但後續必須清楚界定網路塞車之虞的情況,以避免賦予ISP過多管制權限。

  歐盟新修規章已完成立法,後續將交由歐盟電信管制機關(Body of European Regulators for Electronic Communications,BEREC)訂立細部辦法,以拘束歐盟各會員國的網路服務業者,同時各會員國也必須修改國內相關法規,以符合該規章之規範。

相關連結
※ 歐盟電信網路新修規章通過網路中立條款, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7099&no=57&tp=1 (最後瀏覽日:2025/10/10)
引註此篇文章
你可能還會想看
美國能源部加強推動智慧電網之網路安全,並提供自我評估調查工具

  美國能源部於今年(2012)6月28日發布一套新的網路安全自我評估調查工具(Cybersecurity Self-Evaluation Survey Tool),以強化保護公共事業的業者避免遭受網路安全的攻擊,這套工具也是能源部為施行其於5月31日公布的網路安全能力成熟度模型(Cybersecurity Capability Maturity Model)的一部分,同時此模型的發展也是為了支持白宮的電力網路安全風險管理成熟度倡議( Electricity Subsector Cybersecurity Risk Management Maturity Initiative)。   網路安全成熟度模型的發展乃係由能源部與國土安全部共同領導,並且與業界、其他聯邦機構以及卡內基大學軟體工程研究所合作進行,該模型的四個目標在於:加強電力網路安全能力、使相關業者可以有效並持續設立網路安全能力的基準、分享知識、解決的方法與其他相關的參考資料、使業者得以排定對於改善網路安全的行動以及投資上的優先順序,以幫助業者發展並且評估他們的網路安全能力。   此次發佈的評估工具則是以問卷的方式,著重在情境式的認知與威脅及弱點的管理,而後能源部將針對自願提供評估結果的業者提供個案報告,幫助業者改善其網路安全能力,同時,能源部也建議業者,建立優先行動方案,以解決差距的問題,並且定期評估追蹤網路安全能力的改善進度,能源部也提醒業者注意網路威脅環境上與技術上的改變,以進行應變的評估。

數百萬計個人資料遭竊取 引起美國重視資料保護

  美國接連發生電腦仲介商 ChoicePoint 與 NexisLexis 分別於 2004 年 10 月及 2004 年 4 月電腦遭入侵,數以百萬計的個人資料被竊取之事件,使得個人資料外洩的問題,受到美國國會的強烈關注。此一事件的發生,同時讓大家注意到加州資料庫外洩通知法( SB1386 )對於消費者保護的重要性。 SB13866 法要求持有個人敏感資料的組織、企業,當資料外洩時,需立即通知當事人。 Choice point 此次即是迫於加州州法的規定,於 2005 年 2 月通知了 3 萬 5 千名加州州民關於其個人資料遭受竊取的的消息。   鑑於個人資料保護的重要性,美國國會議員 Charles Schumer ( 紐約州 ) and Bill Nelson ( 佛羅里達州 ) 仿照 SB1386 加州立法,於 2005 年 4 月 12 日舉辦了「 2005 年個人資料保護風險通知義務法案」( Notification of Risk to Personal Data Act of 2005 )的公聽會。草案建議成立聯邦性法律,要求企業或政府,一旦其持有之個人資料遭到竊取,即需通知當事人。本草案同時明訂企業或政府應通知的事項;並擬允許,讓資料遭竊的個人,可於其信用報告中顯示其 7 年內可能遭受詐欺警告的紀錄。   本法案中除了包含 SB1386 的規定外,也對販賣個人敏感資料進行規範,並要求聯邦貿易委員會( Federal Trade Commission )設立相關組織,以協助資料遭竊之被害者。

Google挑戰法國最高行政法院對被遺忘權之看法

  2016年3月法國個人資料保護主管機關「國家資訊自由委員會」(Commission Nationale de l'Informatique et des Libertés, CNIL)要求Google等搜尋引擎公司,刪除網路搜尋所出現之歐洲公民姓名。此舉參考2014年歐洲法院(European Court of Justice)對於Mario Costeja González一案(C 131/12)所作裁決,Google公司和Google西班牙公司須遵守西班牙資料保護局(Agencia Española de Protección de Datos, AEPD)要求,移除出現原告姓名之搜尋結果。Google表示不服,並上訴法國最高行政法院(Conseil d'État)。   於本案中Google提出兩點主張:第一,CNIL對於被遺忘權(right to be forgotten)適用範圍過大,聲稱所搜尋到之姓名等資訊,屬於事實或來自新聞報導和政府網站之合法公開網站資訊,認為CNIL將隔絕原本在法國可為其他人所知之合法資訊;第二,Google主張向來遵守各國個人資料保護政策,將遵照CNIL要求,但僅限刪除在法國網域內之歐洲公民姓名,無法及於全球網域,除非法國政策已為全歐盟或全球所適用,不然法國個人資料保護審查制度不能延伸至其他國家。   對於網路公民權利推廣不遺餘力之「電子前線基金會」(Electronic Frontier Foundation, EFF)認為CNIL對法國公民資料保護之特別要求,將對Google造成損害。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP