.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 國際特赦組織(Amnesty International)與法國數位隱私權倡議團體La Quadrature du Net(LQDN)等組織於2024年10月15日向法國最高行政法院提交申訴,要求停止法國國家家庭津貼基金機構(Caisse nationale des allocations familiales,CNAF)所使用的歧視性風險評分演算法系統。 CNAF自2010年起即慣於使用此系統識別可能進行福利金詐欺的對象,該系統演算法對獲取家庭與住房補助的對象進行0至1之間的風險評分,分數越接近1即越可能被列入清單並受調查,政府當局並宣稱此系統將有助於提升辨識詐欺與錯誤的效率。 LQDN取得該系統的原始碼,並揭露其帶有歧視性質。該等組織說明,CNAF所使用的評分演算法自始即對社會邊緣群體如身心障礙者、單親家長,與低收入、失業、居住於弱勢地區等貧困者表現出懷疑態度,且可能蒐集與系統原先目的不相稱的資訊量,這樣的方向直接違背了人權標準,侵犯平等、非歧視與隱私等權利。 依據歐盟《人工智慧法》(Artificial Intelligence Act,下稱AIA),有兩部分規定: 1. 用於公機關評估自然人是否有資格獲得基本社會福利或服務,以及是否授予、減少、撤銷或收回此類服務的人工智慧系統;以及用於評估自然人信用或建立信用評分的人工智慧系統,應被視為高風險系統。 2. 由公機關或私人對自然人進行社會評分之人工智慧系統可能導致歧視性結果並排除特定群體,從此類人工智慧總結的社會分數可能導致自然人或其群體遭受不當連結或程度不相稱的不利待遇。因此應禁止涉及此類不可接受的評分方式,並可能導致不當結果的人工智慧系統。 然而,AIA並未針對「社會評分系統」明確定義其內涵、組成,因此人權組織同時呼籲,歐盟立法者應針對相關禁令提供具體解釋,惟無論CNAF所使用的系統為何種類型,因其所具有的歧視性,公機關皆應立即停止使用並審視其具有偏見的實務做法。
新加坡與東協八國智財局簽署合作協議,加速特定領域專利申請流程以推動東協轉型工業4.0新加坡智慧財產局(IPOS)於2019年8月28日2019年新加坡智財週活動(IP Week @ SG 2019)中,宣布與東協(ASEAN)八國智財局簽署合作協議,新加坡與八個東協成員國智財局將推動在金融科技、網路安全、機器人等關鍵新興科技領域的專利加速審查與許可時程,在為期兩年的試辦計畫當中,企業與研發者最快將可以在提出申請後6個月獲得專利許可,以加速東協國家在推動轉型工業4.0相關基礎建設與製造的進程(Acceleration for Industry 4.0 Infrastructure and Manufacturing,簡稱AIM),並有助於東協國家掌握工業4.0為全球所帶來預計高達1.2兆至3.7兆美元的龐大商機。 根據國際知名管理顧問公司麥肯錫公司(McKinsey & Company)的統計,工業4.0將能為東協國家帶來至少2160億至6270 億的巨大製造業商機,除了前述加速關鍵新興科技領域專利審查的AIM試辦計畫外,包含新加坡在內的九個合作國智財局將擴大合作範圍至專利合作條約(Patent Cooperation Treaty,簡稱PCT),在為期三年的試辦期間內,專利申請人將可選擇透過取得東協國際檢索局(ISA)與國際初步審查局(IPEA)的PCT報告,以加速專利申請人在其他東協國家的專利申請。新加坡透過與東協國家、世界各國的智財合作,積極推動新加坡與全球創新社群(global innovation community)的連結,不僅為全球創新趨勢提供更多價值,亦同時鞏固新加坡作為創新中心的國際地位與經濟成長動能。
WTO歐盟生技產品案解析(下) 數位模擬分身(Digital Twin)數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。 於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。