德國網路服務提供者(ISP)之第三人侵權行為責任

  德國聯邦法院(簡稱:BGH)民事庭於2015/11/26分別在兩件案例中(I ZR 3/14 和 I ZR 174/14)針對網路服務提供者(ISP)責任作出具重大影響力之終審決定。BGH認為即使此侵權網站之內容可在別處被找到,原則上德國ISP仍可阻斷侵權網站之連接。兩案分別由德國音樂集管團體GEMA對德國電信(I ZR 3/14),以及華納、新力、聯合音樂共同對一德國私人電信公司Telefonica O2所提起 (I ZR 174/14),聲明請求法院命令網路連接業者切斷對侵權網站之連接。兩案原告等之聲明分別在一審與上訴審皆被駁回,於是分別上告(Revision)至BGH。

  BGH於判決中指出,雖不排除ISP可阻斷對侵權網站之連接可能性,然先決條件在於著作權人需先盡合理的努力(Zumutbaren Anstrenungen),去阻止被保護內容之擴散。而兩案中原告等未盡此義務,故以此為理由駁回上告。BGH課予著作權人盡合理的努力後,才能訴諸此切斷侵權網站連接之最終手段,此可為我國處理網路服務提供者(ISP)之第三人侵權行為責任之參考。

相關連結
※ 德國網路服務提供者(ISP)之第三人侵權行為責任, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7134&no=66&tp=1 (最後瀏覽日:2026/01/07)
引註此篇文章
你可能還會想看
開放科學(open science)

  開放科學的基本理念,泛指在數位時代的背景下,各類型實驗測量機器獲得大量數據,以及網路行為累積的人類活動記錄,使各領域的研究活動趨向側重資料處理,結合分析工具後,以可閱讀的形式呈現並發表。   開放科學概念應用於行政與制度建立上,主要有兩個面向,其一為政府資助產出科學期刊論文等研究成果的開放取用(open access),意圖解決期刊雜誌訂閱費用過高,導致研究成果流通困難的問題,屬於早期開放科學關注的重點;其二則係使用官方研究資金進行研發時,於研究過程中取得的實驗、觀測及調查之研究資料開放運用,為近期政策與制度性倡議所聚焦,目的為使科學界、產業界以及一般社會大眾得以廣為接收並利用該些研究結果,令政府資金運用的一切成果均能充分回饋給國民與社會,期望藉由研究資料的公開,進一步深化該領域的研究進程、推展跨域研究或企業的產品與服務開發、以及創新活動。   舉例而言,日本內閣府於2018年提出的「統合創新戰略(統合イノベーション戦略)」第二章內,建構了國內開放科學下研究資料管理開放政策之基礎框架,關注伺服器空間內的研究資料保存與管理,與外國研究資料連動以建構巨量知識泉源,讓所有人得以廣泛活用該些研究資料,促成與加速跨領域與跨國境的新創。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

創新金融服務:ZOPA

  具社會經濟學基礎的ZOPA在2005年一出現,即被經濟學人報和集團研究指出,其將是砍掉傳統銀行以及改觀自古以來民眾對貨幣概念的驚人創新金融服務。這種抽離中間金融機構的消費借貸平台,使得交易雙方能取得更滿足交易條件。   相較傳統的借貸,這樣較高收益的交易也同樣帶來較高的風險。不過,ZOPA透過包括信用評等分類、將同一出借款項出借給多人等方式,期使風險降到最低。不過,出借人也要特別注意相關法律議題。依據英國1974年之消費者信用貸款法案(Consumer Credit Act),任何在從事商業交易行為中出借金錢之人,且非偶而為之者,應取得公平貿易部(Office of Fair Trading/ OFT)核發之消費者信用貸款執照(Consumer Credit License),否則為觸犯刑法,會被處以刑罰或罰鍰。目前,在ZOPA可借入之金額已超過15,000英鎊,未來勢必繼續發展,且不排除跨入現有銀行業務範圍。

歐盟執委會提出人工智慧創新計畫,促進歐盟人工智慧技術應用與相關企業發展

2024年1月24日,歐盟執委會(European Commission)推出了人工智慧創新計畫(AI innovation package),支持新創公司和中小企業開發符合歐盟價值觀的人工智慧。該計畫包含以下重要事項: 1.推動歐洲高效能運算聯盟相關之法規修正案(An amendment of the EuroHPC Regulation)。 (1)歐洲高效能運算聯盟是歐盟在2018年依法(Council Regulation (EU) 2021/1173)建立之組織。依該法內容,組織主要目標是在歐盟開發、部署具有極高運算能力的運算系統,為公部門和私人提供強大的運算和資料服務,以支持科學和工業的雙重轉型。 (2)本次法規修正案為歐洲高效能運算聯盟添加了新目標,新目標為建立人工智慧工廠,以促進歐盟對人工智慧的採用和創新。目標細節包含令歐盟取得、推廣人工智慧專用的超級電腦,建立一站式服務以支持歐盟各界開發人工智慧服務、產品及應用程式等。 2.在歐盟執委會下設立人工智慧辦公室,制定歐洲層級的人工智慧政策,並監督政策執行。 3.透過跨國論壇推動以下工作: (1)藉歐洲地平線計畫、數位歐洲計畫,向試圖開發、應用人工智慧的組織提供財政支援。預估將在2027年帶來四十億歐元投資額。 (2)過教育擴張人工智慧人才庫。 (3)鼓勵政府及民眾投資人工智慧新創企業。 (4)加速開發歐洲共同資料空間,供人工智慧社群使用。 (5)支持工業生態系統及公共部門應用人工智慧。應用領域包含機器人、健康、生物技術、製造、行動設備等。 4.歐盟執委會與部分成員國組織了兩個歐洲數位基礎設施聯盟如下: (1)語言科技聯盟(ALT-EDIC): 該聯盟主要工作之一為收集、開發歐洲各國語言模型,供公共部門、企業及未來人工智慧創新計畫使用。聯盟目標為增加歐洲語言資料可用性、維護歐洲語言及文化的多樣性。 (2)城市宇宙聯盟(CitiVERSE EDIC): 主要目標之一是支援城市利用人工智慧,優化各項管理流程。例如交通管理方面,可利用人工智慧模擬空氣品質變化對城市交通狀況的影響,以利政府提出相應解決方案。 目前人工智慧創新計畫的下一步,是先推動歐洲高效能運算聯盟相關之法規修正案。嗣後,透過執行該計畫各項內容,執委會將為歐盟人工智慧政策的實施做好準備。執行該計畫的過程中執委會不僅會支援歐盟各國公共部門採用人工智慧,也會積極推動民間開發、應用人工智慧技術,以提升歐盟競爭力和促進歐盟的永續發展。

TOP