美國專利訴訟和解程序分析
資策會科技法律研究所
法律研究員 徐維佑
104年11月2日
一、美國民事訴訟和解程序
通常民事訴訟當事人有自主權,可以在訴訟進行的任何時段在庭外或者法官面前達成和解,亦即可在證據開示程序開始前、在開示中或預審會議時、在審理庭甚至在審理後、上訴完成前隨時達成。
1.庭外和解
當事人在雙方律師的主持下達成庭外和解,根據美國聯邦民事訴訟規則第41條規定,向法院提出雙方當事人簽署的撤回訴訟的書面協定,從而終結訴訟程序;當事人雙方在和解協議中自行約定能否就同一事項再次提出訴訟。
2.訴訟上和解
美國聯邦民事訴訟規則第69條規定,在審理前或裁判責任金額前,任一方當事人可向法院申請合意判決,以協議金額為判決內容,與普通判決一樣具有強制執行力,禁止就合意判決標的重複起訴。
二、美國專利訴訟和解協議方式
美國專利侵權訴訟,為避免被告提出專利無效抗辯或提出反訴,亦即向法院請求宣告原告專利權無效、或是拿自己的專利反控原告。美國專利訴訟案件大多以和解收場;而和解方式多協議以專利授權並由被告支付授權金、原告被告以彼此專利交互授權、或簽署免訴條款(covenant not to sue),向法院提出雙方當事人簽署的撤回訴訟的書面協定,從而終結訴訟程序。
所謂免訴條款協議,常用於侵權訴訟中。根據該協議,訂約時有訴權的一造同意不行使訴權起訴對造。這種協議並不消滅訴因;而且即使當事人在協議中沒有作特別保留,他也可以繼續追究其他共同侵權人的責任。
三、免訴條款之範圍與效果
美國訴訟和解如前所述,雙方需達成書面協議,根據美國聯邦憲法第3條,司法體系不得在沒有法律紛爭的情況下決定法律問題或對於法律提出意見。根據該條規定,向法院提出救濟的當事人須證明其有「當事人適格」,而當免訴條款簽署證明紛爭已經消滅,或當事人對於判決的結果無法獲得實質利益時,法院認為該紛爭已經消滅使判決無實益(moot)不得受理。
2009年Nike公司於美國地方法院主張[1]Already公司侵害並稀釋其商標,Already公司拒絕停止銷售同時提出Nike公司商標無效之訴,2010年Nike公司發布免訴條款,載明Nike公司不再針對現在或未來近似的Already公司產品提出商標侵權訴訟,要求撤銷訴訟並撤銷Already公司的無效之訴,然而Already公司拒絕撤銷。地方法院與之後接受上訴的聯邦法院一致同意免訴條款表示紛爭已歸於消滅,駁回Already公司的無效之訴。
免訴條款雖非證明和解協議唯一方式,但美國司法判例上曾將拒絕簽署免訴條款,作為法院接受對造提起確認專利無效之訴的理由之一。美國聯邦巡迴上訴法院(CAFC)於Prasco案[2],認為專利權人拒絕簽署免訴條款協議,並配合其他客觀一切情狀,認定對造具備提起專利不侵權之確認訴訟,法院有司法管轄權。
四、結論
立約免訴條款並非美國訴訟和解協議要件,和解僅需證明雙方並無爭議事項,則法院判決已無實益。至於雙方無爭議事項之證明方式,包含和解書與合意判決,而專利訴訟和解書的協議方式,可能為授權金、交互授權、以及免訴條款等協議。
根據美國聯邦巡迴法院先例,針對訴訟和解方式,授權與免訴條款之效果並無二致[3](whether the language is couched in terms of a license or a covenant not to sue; effectively the two are equivalent.)。惟針對兩造日後得訴訟範圍,包括是否對於權利人再授權的第三人有約束力,於授權或免訴條款的協議中皆可議定。至於以免訴條款協議之好處,在於權利人得一次取得賠償金,可立即認列為權利人當年度獲利;授權協議則多以一定期間或符合一定條件後分階段取得權利金。
英國國家統計局(Office for National Statistics)轄下之政府資料品質中心(Government Data Quality Hub)為實踐英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)發布之《國家資料戰略》(National Data Strategy),於2020年12月3日釋出《政府資料品質框架》(The Government Data Quality Framework),以達成國家資料戰略中「資料基礎(Data Foundation)」之核心目標。該框架提出「資料品質原則」(Data quality principles),旨在解決目前政府資料品質低落的問題。該原則包含以下五點: 一、確保資料品質:機關內部應建立有效的資料治理機制,例如培訓員工具備管理資料的能力、持續改進資料品質等。 二、了解使用者需求:機關應將使用者對資料品質的需求視為優先處理事項。 三、評估資料於資料生命週期各階段之品質:機關應密切關注資料於生命週期各階段之品質,並與使用者及利益關係人交換意見。 四、持續溝通資料品質:機關應持續與使用者交流資料品質現況,提供使用者有效的文件及中繼資料(metadata)。 五、了解造成資料品質低落的主因:分析造成資料品質低落的根本原因,從源頭徹底解決資料品質問題。 英國國家統計局政府資料品質中心希望藉由本框架揭示的資料品質原則,提升政府機關人員主動辨別及解決資料品質問題的能力,以改善政府資料品質、為人民帶來更高品質的資料,釋放資料價值並促進社會經濟發展。
英國展開醫療器材監管公眾意見徵詢並公布《人工智慧軟體醫材改革計畫》英國藥物及保健產品管理局(Medicines and Healthcare Products Regulatory Agency, MHRA)於2021年9月16日展開期待已久的「英國醫療器材監管的未來」公眾意見徵詢(Consultation on the Future of Medical Devices Regulation in the United Kingdom),並公布「人工智慧軟體醫材改革計畫」(Software and AI as a Medical Device Change Programme)。英國欲從醫療器材上市前核准至其壽命結束進行監管改革,徹底改變一般醫療器材與人工智慧軟體醫療器材之監管方式。意見徵詢已於2021年11月25日結束,而該修正案預計於2023年7月生效,與英國針對醫療器材停止使用歐盟CE(Conformité Européenne, 歐洲合格認證)標誌並要求採用英國UKCA(UK Conformity Assessed, 英國合格評定)標誌的日期一致。 人工智慧軟體醫材改革計畫則包含十一個工作項目(work package,下稱WP),WP1與WP2分別為監管資格與監管分類,皆涉及監管範圍之劃定;WP3與WP4分別涉及軟體醫材上市前與上市後,如何確保其安全性與有效性的監管之研究;WP5針對軟體醫材之網路安全進行規範;WP6與WP7涉及加速創新軟體醫材審核上市之特別機制,分別為類似「創新藥品藥證審核與近用途徑」 (innovative licensing and access pathway)的機制,以及允許適時上市並持續研究監控風險的「氣閘分類規則」(airlock classification rule);WP8為確保智慧型手機之健康應用程式安全、有效與品質之規範研究;WP9~WP11則分別針對人工智慧軟體醫材之安全與有效性、可解釋性(interpretability)以及演進式(adaptive)人工智慧進行法規調適之研究。 MHRA預計透過指引、標準、流程之公布而非立法方式實現其監管此領域的目標。MHRA亦透露,針對上述工作項目,其已與重點國家和國際機構進行研究合作,已有不少進展即將公布。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
谷歌,蘋果商談競標已破產的柯達專利根據華爾街日報報導指出,蘋果及谷歌將聯合競標柯達公司所釋出的專利組合。 在智慧型手機市場上蘋果和谷歌互為競爭對手,原訂在柯達專利拍賣案中,兩家企業提出1億5仟萬美元至2億5仟萬美元金額進行競標活動,改協議採合作結盟競標方式,以較低的金額獲得柯達的專利。 華爾街日報引據熟悉此項談判之人士指出主要電子產業公司,如Samsung(三星)、LG(樂金)及HTC(宏達電),及其他以透過購買專利作為投資或保護公司營運為目的之企業亦有參與。 柯達為規劃重新成為印刷領域的專業,需藉由販賣其所擁有的1,100件數位影像專利以籌措資金,在今年年初,柯達評估所有專利價值為26億美元(21億歐元) 而柯達對外發布買方非常踴躍於此次競標活動中,但目前尚未可以公布結果,將無限期限地延長拍賣時間,主要柯達是希望蘋果及谷歌能在所釋出的專利中,進行一場專利競標的競賽。