根據美國公共電視台在2016年1月6日的新聞,指出生物支付將可能成為新興支付工具。生物支付之定義為利用生物辨識(biometric)技術驗證個人生物特徵,諸如:指紋、虹膜等進行支付。採用生物支付技術,未來將無須使用信用卡或行動裝置,僅需要個人生物特徵之辨識即可完成交易。此轉變將使未來交易更加快速、便利,但同時,生物支付的安全性卻也不無疑義。
即便生物辨識屬於高層級的資訊安全保護機制,但水能載舟,亦能覆舟。生物辨識利用生物不可變之特性進行身分識別,涉及高度個人隱私,為妥善保護個人資訊安全,需訂立生物辨識相關規範加以管制,否則將衍生許多法律問題。
例如:在2015年6月,美國線上出版商Shutterfly公司被控訴違法蒐集個人資料。原告稱其並非Shutterfly公司之註冊使用者,也從未同意其生物辨識資訊被該公司蒐集,但其面紋(Face print)卻被上傳至該公司網站,並標註姓名,儲存在自動針對相片標記臉部辨識系統之資料庫。
依據BIPA針對生物辨識定義及蒐集規範:
1.第10條:
生物辨識之態樣,包含視網膜、虹膜掃描、指紋或是手部、臉部外觀之掃描,但不包括簽名、照片、用於科學檢測之人體樣本、頭髮顏色等。
2.第15條(a):
規定公司蒐集個人生物特徵資訊應有相關規範供公眾查閱,並應提供生物辨識資訊之保管及銷毀日期及相關資訊。
3.第15條(b)(1):
蒐集生物辨識資訊應告知當事人。
Shutterfly公司提出要求法院不受理之抗辯,主張BIPA規定之臉部外觀,其文意解釋應為物理上個人親自接受掃描所得之資訊,並非原告所主張以照片辨識之臉部外觀,但法院認為Shutterfly之主張並不合理,因此同意受理此案。
觀察該案可發現,儘管生物辨識提高資訊安全之保護,但相關法規範解釋仍待實務完備。另一方面,生物特徵資訊極易被他人蒐集,因此,如何建置蒐集個人辨識資訊及完善相關措施,也是推行生物支付措施所需突破的關口。
在面對未來3G行動通訊市場的激烈競爭中,主管機關應如拿捏管制的強度?GSM協會於2006年2月6日公布未來行動通訊市場的規範原則建議有執法者應持續注意管制干預手段可能造成的成本及效益;管制目標及政策應該被清晰定義,且管制手段應符合最小干預及必要性;管制的內容必須是可公開即可受公評;應以市場現況,並從微觀及宏觀角度進行規範;在發照政策上應鼓勵新進業者對於電信設施的建設並促進有效市場競爭;頻譜的核配應從促進經濟上的效率、有效競爭及從市場結構面進行考量;對於行動通訊網路的限制應基於以科學、技術或確實研究結果,而不以公共顧慮為考量;對於客戶資料的不當用途,應設計安全防範措施等等。
FCC建議調整普及服務基金以推動寬頻建設美國聯邦通訊委員會(The Federal Communications Commission, FCC)擬於3月17日向國會提出未來的國家寬頻計畫,並預計於2012年開始,調整目前用來補助電話服務的普及服務基金(Universal Service Fund),以推動高速網際網路。 美國普及服務基金的建立,原本是用以確保所有美國居民接取基本的電話網路。依目前的普及服務基金計畫,除了補助低收入居民電話服務、學校與圖書館的網際網路接取,與鄉間醫療單位的高速網路連結之外,最主要部份是對於由民營事業建設網路不符經濟效益的偏遠鄉區提供電話服務;此部份基金的預算是來自電信業者跨州與國際長途電話收益之稅收,於2010年達約為80億美元,未來將轉作推動寬頻網路之用,至於普及服務基金中的其他部份,則將繼續維持。 在FCC的計畫中,不僅在普及服務基金下設立連結美國基金(Connect America Fund)來補助寬頻服務,並將設立行動基金(Mobility Fund)發展3G無線網路。另外,FCC預計向國會提出的計畫包含多項選擇,包括在不要求國會另行增加預算下,達成在2020年99%美國家戶接取寬頻之目標,以及經由國會同意於未來三年投入額外的90億美元,以加速寬頻網路建設等方案。
德國聯邦工業聯盟與Noerr法律事務所所公布「工業4.0 – 數位化進程面臨之法律挑戰」意見報告德國聯邦工業聯盟(Bundesverband der Deutschen Industrie)與Noerr法律事務所於2015年11月共同公布「工業4.0 – 數位化進程面臨之法律挑戰」(Industrie 4.0 – Rechtliche Herausforderungen der Digitalisierung)意見報告。該報告透過德國聯邦工業聯盟與Noerr法律事務所訪談德國數家企業法務部門,以釐清業界在邁入工業4.0轉型下會遇到的法律議題,並對此議題提出法律意見。 此報告針對工業4.0相關法律議題提出以下建議: 1.資料保護:業者可透過技術性設計達到資料保護的目的,例如隱私設計(Privacy by Design)。另,繼歐盟法院針對安全港判決的裁定,業者應積極關注歐盟第29條資料保護工作小組針對跨國資料傳輸的指引或德國聯邦資料保護委員(Datenschutzbeauftragten des Bundes)針對跨境資料保護規範的建議。 2.資料產權:在立法上不應急於規範管制,有恐危及企業資料分享的空間。建議企業間可透過雙方性契約規定資料的使用權 3.資訊安全:雖支持於2015年7月通過之德國資訊系統安全法(IT-Sicherheitsgesetz),強制性業者履行在遭資安攻擊時履行通報義務(Meldepflicht)。但是,若能實施以業者本身主動完成資安保護措施之鼓勵機制,則更能積極性的鼓勵業者履行其資安義務。 4.智慧財產權:標準必要專利的授權及使用係業者在工業4.0體系中,特別在系統的互通性上,非常重要的一環。在法制環境上應讓各個業者,在一定的條件下,均享有標準必要專利授權。 5.產品責任:因智慧工廠下之自治系統(autonome Systeme)有自主決定的能力,而因其所導致的民事糾紛,可透過新民事責任概念的架構所解決,並不一定要將該自治系統視為一獨立的數位法人(ePerson)。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。