日本「個人編號(マイナンバー)」制度遭受違憲的質疑

  日本政府基於(1)行政的效率化(2)提升國民便利性及(3)實現公平、公正的社會等目的,於2015年10月以後開始分發記載國民姓名、住址、性別、個人編號等相關資訊的「通知卡(通知カード)」,日本民眾藉著通知卡至各地相關單位申辦正式「個人編號卡(マイナンバーカード)」,並於2016年01月正式開始實行。

  然而此項制度在施行之初即爭議不斷,住在東京、大阪等地的156名居民於2015年12月01日向東京、仙台、新潟、金澤、大阪共五個地方法院提起民事訴訟,請求日本政府停止蒐集、利用並且刪除個人編號,同時要求給予每人十萬日圓的損害賠償。原告訴狀以日本年金機構受到網路攻擊而有125萬件個人資料流出為例,認為現今關於個人編號制度的行政機關及民間企業的安全防護對策並不充分,主張有極高洩漏「關於稅務及社會福利個人資料的危險性」,同時主張個人編號制度並未取得本人同意即蒐集個人資訊,侵害憲法第13條保障的「控制自我資訊的權利」,亦即隱私權及人格權。

  2003年開始正式啟動的 「住民基本台帳網路系統(住民基本台帳ネットワーク)」先前也被提起類似訴訟,惟最高法院認定「制度或系統尚未不備、並沒有侵害隱私權」而認定合憲。本案原告律師團則認為住民基本台帳網路系統僅有行政機關接觸到個人資料,而個人編號制度則連民間企業都能接觸到個人資料,因此原告律師團的水永誠二律師即表示:「個人編號制度和住民基本台帳網路系統相比規模更大。就算住民基本台帳網路系統被認定合憲,也不構成個人編號制度合憲的理由。」

  儘管本件訴訟的勝訴效力僅及於當事人,不會立刻決定個人編號制度存廢。惟若能動搖該制度適用於所有擁有住民票的人的前提,則日本政府將被迫重新檢討個人編號制度,本訴訟的後續發展值得繼續觀察。

相關連結
※ 日本「個人編號(マイナンバー)」制度遭受違憲的質疑, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7144&no=55&tp=1 (最後瀏覽日:2026/02/06)
引註此篇文章
你可能還會想看
日本政府擬修法擴大個人編號卡(My Number Card)資料使用及調取範圍

日本政府於2022年11月29日公布「個人編號法」(平成二十五年法律第二十七号,行政手続における特定の個人を識別するための番号の利用等に関する法律)之預計修正內容。 目前個人編號法第9條第2項主要限定於社會保障、稅收、災害防治三個領域,該法對哪一些行政機關能調取,以及可調取個人資料的種類均有詳細規定。本次修正案目的為將個人編號的用途擴大,除了前揭所提三個領域外,將再包括國家資格管理、汽車登記以及外籍居民行政程序、國家急難救助金及其他津貼發放等。其次,為擴大個人編號用途與增加運用彈性,此次修法重點之一在於擴大該法第4章第19條特定個人編號(My Number)提供限制中,第17款關於其他依據「個人資料保護委員會」所訂規則準用事項範圍。未來日本政府可透過「政省令」的修改(基於國會立法授權,而由行政部門所頒訂,具有對外法拘束力,類似我國法規命令位階),讓政府及相關機關能在有需要時即可蒐集特定個人編號,以迅速、彈性地對應外在情況。 本案若經國會審議通過後,細節部分還需約時二年修改作業系統,最快預定令和7年(2025年度)施行。其他修正重點如:1.將公家機關掌握民眾銀行帳戶資訊和個人編號自動連結,此舉係為改善疫情期間之問題,未來將可使政府發放補助金及急難救助金時更為順暢;2.尚未取得個人編號卡仍可申請「資格確認書」參加社會保險或診療;3.嬰幼兒五歲前「個人編號卡」都不須附上照片等。 唯輿論有批評,在尚未經過國會及有識者充分討論前,貿然大幅擴大資料調取、使用範圍,尤其日本政府計畫將個人所有銀行帳戶都強制連結個人編號,可能讓政府更容易掌握民眾資訊,像是追蹤稅務狀況、打擊逃漏稅等。日本「個人編號法」主管機關總務省則再三保證個人編號卡晶片不會儲存稅金、年金等個人資料,即使作為醫療或健康用途時,也不會紀錄健檢結果和服用藥物等訊息。雖然仍有部分待改進處,惟日本以專法規定個人編號卡儲存資料之種類與範圍,並於該法中說明相關管理措施,仍值得我國未來密切關注。

歐盟提出先進製造先進歐洲報告與行動方針

美國總統簽署有關監管數位資產的行政命令

  美國總統於2022年3月9日簽署有關監管數位資產的行政命令(Executive Order on Ensuring Responsible Development of Digital Assets),有鑑於加密貨幣(cryptocurrencies)在內的數位資產於過去大幅成長,自5 年前的 140 億美元市值快速增長到去年11月的 3 兆美元市值,並且有100 多個國家正在探索央行數位貨幣(Central Bank Digital Currency, CBDC)。為使美國政府有整體性的政策以應對加密貨幣市場的風險與數位資產及其基礎技術的潛在利益,該行政命令以消費者與投資者保護、金融穩定、打擊非法融資、增進美國競爭力、普惠金融、負責任的創新為六大關鍵優先事項。   為實現關鍵優先事項,行政命令中所採取的具體措施包含:(1)政府機關應合作來保護美國消費者與企業,以因應不斷成長的數位資產產業與金融市場變化; (2)鼓勵金融監管機構識別與降低數位資產可能帶來的系統性金融風險,制定適當的政策建議以解決監管漏洞;(3)與盟友合作打擊非法金融與國安風險,減輕非法使用數位資產所帶來非法金融與國家安全風險;(4)運用數位資產的技術,促進美國在技術與經濟競爭力上保持領先地位;(5)支持技術創新並確保負責任地開發與使用,同時優先考慮隱私、安全、打擊非法利用等面向;(6)鼓勵聯準會研究CBDC,評估所需的技術基礎設施與容量需求。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP