2015年1月6日,美國聯邦地區法官裁定,猴子用照相機自拍,猴子無法取得自拍照的著作權。
英國攝影師Slater在四年前,讓黑冠猴Naruto使用其相機,成功的拍出了罕見的黑冠猴自拍照;而攝影師Slater後來把這些自拍照收錄在出版書中,並同時在網路上公開,並獲得廣大迴響。但之後維基百科(Wikipedia)收進免費圖片資源中,供大眾免費下載使用,Slater認為則認為這些照片的著作權已經被英國官方認可屬於Slater所開設的公司,此認可應適用於全世界。惟美國著作權局在2014年最新政策中,認為著作權登記僅適用「人類作品」,據此Naruto之自拍照並不受著作權保障。
而善待動物組織PETA(People for the Ethical Treatment of Animals)組織也加入了著作權爭奪戰局,其認為由Naruto所拍攝自拍照,其著作權應屬於Naruto,但由於Naruto不懂如何行使權利,故由PETA代為管理著作權,相關收益均會用於保護黑冠猴,並且向舊金山聯邦法院提出告訴。美國聯邦法院則在2016年1月6日判決,目前著作權法仍未將保護範圍擴張至動物作品上,故Naruto並未擁有該自拍照著作權,自無PETA代掌著作權可能;PETA接獲判決後表示會提出上訴。
面對層出不窮資料違背或身份竊盜事件,2014年初, FTC於美國國會的例行會議上,就數位時代關於隱私權之保護課題進行作證,會議中,FTC乃呼籲美國國會應立即通過制定一個更強的聯邦資料安全與違背提醒的法律,其也進而提出「個人資料隱私暨安全法案(草案)」 (Personal Data Privacy and Security Act of 2014, S.1897)。該草案主要分成兩大部分: 第一部份,將強化身份竊盜和其他違反資料隱私與安全之懲罰;第二部份,係關於可茲辨識個人資料(PII)之隱私和資訊安全。 法案第202條係關於「個人資料隱私與安全機制」(personal data privacy and security program),目的在強化敏感性可茲辨識個人資料的保護,從行政(administrative)、技術(technical)和實體(physical)三個構面的防衛機制,進行相關標準之制訂與落實。有關適用之範疇,乃就涉及州際貿易之商業實體,而該州際貿易包含蒐集、近取、傳輸、使用、儲存或在電子或數位格式處理可茲辨識個人之敏感性資料,而這些資料總計多達1萬筆以上,然而,將不適用於金融機構(financial institutions)、醫療保險轉移和責任法(HIPPA)所管制者、服務提供者(service provider)和公共紀錄(public records)。 而在機制設計上,也係從「設計」(DESIGN)、「風險驗證」 (RISK ASSESSEMENT)和「風險管理」(RISK MANAGEMENT)三個角度進行切入,也必須確實提供員工教育訓練(TRAINING)、弱點測試(VULNERABILITY TESTING)、定期驗證和個人資料隱私與安全之更新,另外,在與外部與服務提供者(例如ISP)之關係上,公司必須盡到適當勤勉的義務(due diligence),也必須透過契約(contract)方式,約定前述所建置起之資料隱私安全機制,並在安全性遭受到侵害時,以合理方式通知締約他方。 本案目前在聯邦參議院已經二讀通過,已交付參議院司法委員會進行下一階段的審議,該立法草案未來是否會直接或間接影響物聯網環境生態系統之商業運作,有待未來持續關注之。
美國參議院通過「2008年基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008)美國參議院以95對0票通過了「2008年基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008),該法案主要是為了增補「2007年基因資訊平等法」(The Genetic Information Nondiscrimination Act of 2007)所制定。 「2008年基因資訊平等法」的內容主要為:1.保險業者不得基於被保險人的基因資訊,拒保或是提高保費,也不得要求被保險人提供其基因資訊以供保險用途,除非符合該法的例外規定。2.雇主不得以員工的基因資訊來限制、隔離、分級員工的工作,更不可據此來剝奪員工的工作機會。但是,本法所稱的基因資訊不包含個人的性別與年齡。 在本法通過之前,美國已有41個州立法保護個人的基因資訊被保險公司使用,並且進行不平等的對待;另有32個州立法保護員工因為基因資訊,兒在工作場合受到歧視。美國並於2000年發佈行政命令(Executive Order 13145),禁止利用基因資訊歧視聯邦單位的員工;另外,「1996年醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act of 1996, HIPAA)也針對歧視做了若干的保護,但是仍有許多漏洞,諸如沒有限制保險公司收集被保險人的基因資訊,或是沒有禁止保險公司要求被保險人進行基因檢測等,所以觀察家認為本法的通過對於個人權利保護是一項進步,但是遺傳病醫藥業者與研究者卻憂慮本法阻礙了醫療研究的發展。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
美國「潔淨能源製造推動方案」美國的「潔淨能源製造推動方案」(Clean Energy Manufacturing Initiative, CEMI) 係由能源部自2014年起推動,目標是在強化美國製造業之競爭力的同時,促進經濟成長與能源目標及能源安全的達成。潔淨能源製造推動方案係以創新及排除市場障礙為核心目標,相關行動包括:(一)技術研發:能源部在推動方案下針對製造業的研發提高補助金額;(二)新型創新模式:推動方案旨在透過公私夥伴計畫與製造創新量能的提生,促進美國境內潔淨能源製造創新基礎設施之共享;(三)競爭力分析:經由競爭力分析挹注研發投資與確認對於潔淨能源製造而言至關重要之助力與阻力;(四)溝通與意見徵詢:推動方案特別強化與利害關係人間的廣泛對話,以修正其推動策略,並確認政府與民間部門能經由哪些途徑以共同合作來提升美國在潔淨能源製造上之競爭力;(五)能源生產力之技術支援:能源部向製造商進行能源生產力資源上的投資,這當中包括技術支援與市場領銜計畫。在我國之相關發展上,2015年11月26日於北京舉辦之「兩岸工業發展和合作論壇」,經濟部工業局表示,論壇聚焦於智慧製造與綠色製造,兩岸可針對工業發展過程中,例如材料、監控、生產流程等方面,整合雙方技術特點共同解決。