猴子自拍照著作權爭議;美國法院:動物無法擁有著作權

  2015年1月6日,美國聯邦地區法官裁定,猴子用照相機自拍,猴子無法取得自拍照的著作權。

  英國攝影師Slater在四年前,讓黑冠猴Naruto使用其相機,成功的拍出了罕見的黑冠猴自拍照;而攝影師Slater後來把這些自拍照收錄在出版書中,並同時在網路上公開,並獲得廣大迴響。但之後維基百科(Wikipedia)收進免費圖片資源中,供大眾免費下載使用,Slater認為則認為這些照片的著作權已經被英國官方認可屬於Slater所開設的公司,此認可應適用於全世界。惟美國著作權局在2014年最新政策中,認為著作權登記僅適用「人類作品」,據此Naruto之自拍照並不受著作權保障。

  而善待動物組織PETA(People for the Ethical Treatment of Animals)組織也加入了著作權爭奪戰局,其認為由Naruto所拍攝自拍照,其著作權應屬於Naruto,但由於Naruto不懂如何行使權利,故由PETA代為管理著作權,相關收益均會用於保護黑冠猴,並且向舊金山聯邦法院提出告訴。美國聯邦法院則在2016年1月6日判決,目前著作權法仍未將保護範圍擴張至動物作品上,故Naruto並未擁有該自拍照著作權,自無PETA代掌著作權可能;PETA接獲判決後表示會提出上訴。

相關連結
※ 猴子自拍照著作權爭議;美國法院:動物無法擁有著作權, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7145&no=57&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
印度競爭委員會因廣義平價義務條款裁罰網路旅行社

印度競爭委員會(Competition Commission of India, CCI)於2022年10月19日以違反競爭法(Competition Act)第3條及第4條規定,涉嫌協議限制競爭與濫用市場地位,分別對兩家網路旅行社(online travel agents, OTAs)—MakeMyTrip India Private Limited和Ibibo Group Private Limited(合稱MMT-Go)裁罰22.348億及16.888億印度盧比(約為2600萬和2029萬美金),並要求MMT-Go修改與合作飯店之間的「廣義平價義務條款」,CCI認為「廣義平價義務條款」可能會限制競爭,具有市場地位的業者施行可能造成壟斷,需要個案認定是否違反競爭法。MMT-Go向國家公司法上訴法院(National Company Law Appellate Tribunal, NCLAT)提起救濟,NCLAT於2023年2月23日宣布將對CCI的裁罰進行審理,預計於4月11日舉行庭審。 「平價義務條款」在OTAs和合作飯店間相當常見,是為了要解決搭便車問題,防止飯店從中獲取不公平利益,而平價義務條款分成「狹義」與「廣義」。「狹義平價義務條款」禁止飯店在飯店自身網站以更好的價格與條件進行銷售,因只限制飯店在本身銷售管道的條件,並不影響OTAs之間的競爭。而「廣義平價義務條款」則禁止飯店在其他銷售管道以更好的價格和條件進行銷售,此將減少OTAs之間的競爭。當具有市場地位的OTAs與飯店簽訂「廣義平價義務條款」,因其更為低廉的價格與市場地位,其競爭對手無法與之公平競爭,可能產生壟斷。 此外,歐盟可能有同樣的看法,歐盟委員會於2022年5月新修訂「垂直集體豁免規則」(Vertical Block Exemption Regulation, VBER)將廣義平價義務條款從豁免範圍中刪除,但仍豁免狹義平價義務條款。因為廣義平價義務條款可能限制競爭或造成壟斷,印度與歐盟對於廣義平價義務條款已經做出限制,可能是未來競爭法的國際趨勢,可以作為我國未來相關法規調適之參考。

中國大陸將展開為期一年關於科技成果使用、處置和收益管理的試點工作

  根據中國大陸國務院於2014年7月2日召開國務院常務會議後的決定,未來大陸地區將在其國家自主創新示範區和自主創新綜合試驗區內,選擇部分中央級事業單位,展開為期一年關於科技成果使用、處置和收益管理的試點工作。   以鼓勵科研創新作為驅動經濟發展的策略,已是最新一屆大陸地區中央領導人施政的重點。早在2007年其政府修訂之《科學技術進步法》,已對申請項目的承擔者(類似我國執行單位或計畫主持人)依法取得發明專利權等知識產權有所規範。然目前大陸地區對於整體科技成果之無形資產的使用權、處置權和收益權等,並無一致性的作法。   惟為加速科技成果移轉(大陸地區稱為「轉化」)和事業化,進一步提升研發創新,中國大陸財政部曾於2011年在北京中關村的國家自主創新示範區,展開中央級事業單位科技成果處置權和收益權的管理改革,簡化800萬以下的科技成果處置流程(註:關於此部分發展趨勢可另參考近期國務院法制辦公室對外公告之「關於《促進科技成果轉化法(修訂草案送審稿)》公開徵求意見通知」等相關內容)。   本次中國大陸國務院常務會議進一步決定,允許更多的試點單位可以採取轉讓、許可、作價入股等方式移轉科技成果,將所得收入全部留歸試點單位自主分配。相信這樣的方式有助於激勵對科技成果創造做出重要貢獻的機構和人員,因本次試點工作為期一年,其具體執行成果將持續觀察、瞭解。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

達成京都議定書減量目標 提昇能源效率比課碳稅衝擊小

  因應京都議定書,經濟部日前引用學界研究報告發現,我國若依議定書原則達成溫室氣體減量目標,總計需投入經費達五八七八億元至八七○八億元。為達成這項目標,政府採取提升能源效率的作法,比直接課徵碳稅,對國內經濟衝擊力道較小。   根據國際能源總署公布資料顯示,台灣CO2排放總量達二億一七三○萬公噸,人均排放量達九.八公噸,皆高於全球平均值,每單位CO2排放所創造的GDP為一.八九(美元/公斤CO2)也較OECD等先進國家平均值低。   經濟部內部歸納CO2減量效果不佳的原因,除政策上採非強制處理態度外,過去十年間,石化、鋼鐵等高耗能產業結構調整緩慢,加上半導體及液晶面板等大量使用全氟化物、六氟化硫的產業訊速成長,使得工業製程中排放的CO2等溫室氣體大幅成長更是主要原因。   依京都議定書條約精神及國際環保現況,我國與南韓同屬網要公約非附件一成員中的「新興工業國」,成為公約下一階段管制對象。致使抑制國內激增溫室氣體排放量已成為我國政府迫切須處理的課題。   在經濟部這份內部研究報告中,也引用臺灣大學農業經濟系教授徐世勳等學者的研究推估,如果台灣要達到京都議定書的要求,將CO2排放量控制在一九九○年水準,則減量成本將達新台幣五八七八億元至八七○八億元。   而學界的這項研究也針對開徵碳稅稅率不同對台灣經濟影響進行評估,推估當對每公噸CO2排放課徵六○○元碳稅時,對經濟成長衝擊為負○.六%,調高至七五○元時,所造成的衝擊則更達負○.七一%。

TOP