網路安全資訊分享法案(Cybersecurity Information Sharing Act,CISA)於2015年10月27日在「參議院」通過。接著眾議院於12月18日通過1.15兆美元的綜合預算法案,並將網路安全資訊分享法案夾帶在預算案中一併通過,最後美國總統歐巴馬亦在同日簽署通過使該法案生效,讓極具爭議的網路安全資訊分享法案偷渡成功。
網路安全資訊分享法案,建立了一個自願性的網路資訊安全分享之框架,其主要內容,在讓美國民間企業遭受網路攻擊或有相關跡象時,得以分享客戶個人資訊予其他公司或美國國土安全局等相關部門,同時並讓民間企業免除向公務機關洩漏客戶個資隱私等相關之法律責任。該法案目的係期盼藉由提高網路攻擊訊息共享度來改善網路安全問題。
該法案通過引發各界譁然。修正後的網路安全資訊分享法案去掉多數保護隱私權之條款,諸如分享客戶資訊時不用再遮掉無關的個人資訊、不再禁止政府利用這些個人資訊進行監控。
美國媒體批評該法案的通過是政府最可恥荒謬的行為之一。就隱私權層面,批評者認為,該網路安全資訊分享法案仍與監控密切結合,未能解決客戶個人資料被大量外洩的風險。就程序面而言,一個正式的網路安全資訊分享法案似乎不應被包裹在大額綜合預算法案中通過。該法案通過後之執行情形值得繼續觀察。
歐盟執委會於2019年6月正式通過「歐盟網路與資訊安全局暨網路安全認證規則(EU Regulation on ENISA and Cyber Security Certification)(Regulation (EU) 2019/881)。規則新增歐盟網路與資訊安全局(European Union Agency for Network and Information Security,ENISA)之職責,負責推行「網路安全認證機制(European cybersecurity certification scheme)」。 網路安全認證機制旨在歐盟層面針對特定產品、服務及流程評估其網路安全。運作模式是將產品或服務進行分類,有不同的評估類型(如自行評估或第三方評估)、網路安全規範(如參考標準或技術規範)、預期的保證等級(如低、中、高),並給予相關之認證。為了呈現網路安全風險的程度,證明書上可以使用三個級別:低、中、高(basic,substantial,high)。若資訊安全事件發生時,對產品、服務及流程造成影響時,廠商應依據其產品或服務之級別採行相對應的因應對策。若被認證為高等級的產品,則表示已經通過最高等級的安全性測試。 廠商之產品或服務被認可後會得到一張認證書,使企業進行跨境交易時,能讓使用者更方便理解產品或服務的安全性,供應商間能在歐盟市場內進行良好的競爭,從而產生更好的產品及性價比。藉由該認證機制所產生的認證書,對於市場方將帶來以下之效益: 一、產品或服務的提供商(包括中小型企業和新創企業)和供應商:藉由該機制獲得歐盟證書,可以在成員國中提升競爭力。 二、公民和最終使用者(例如基礎設施的運營商):針對日常所需的產品和服務,能做出更明智的購買決策。例如消費者欲購買智慧家具,就可藉由ENISA的網路安全認證網站諮詢該產品網路安全資訊。 三、個人、商業買家、政府:在購買某產品或服務時,可以藉此機制讓產品或服務的資訊透明化,以做出更好的抉擇。
歐盟孤兒著作指令(Directive 2012/28/EU)立法評析 英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
英國展開醫療器材監管公眾意見徵詢並公布《人工智慧軟體醫材改革計畫》英國藥物及保健產品管理局(Medicines and Healthcare Products Regulatory Agency, MHRA)於2021年9月16日展開期待已久的「英國醫療器材監管的未來」公眾意見徵詢(Consultation on the Future of Medical Devices Regulation in the United Kingdom),並公布「人工智慧軟體醫材改革計畫」(Software and AI as a Medical Device Change Programme)。英國欲從醫療器材上市前核准至其壽命結束進行監管改革,徹底改變一般醫療器材與人工智慧軟體醫療器材之監管方式。意見徵詢已於2021年11月25日結束,而該修正案預計於2023年7月生效,與英國針對醫療器材停止使用歐盟CE(Conformité Européenne, 歐洲合格認證)標誌並要求採用英國UKCA(UK Conformity Assessed, 英國合格評定)標誌的日期一致。 人工智慧軟體醫材改革計畫則包含十一個工作項目(work package,下稱WP),WP1與WP2分別為監管資格與監管分類,皆涉及監管範圍之劃定;WP3與WP4分別涉及軟體醫材上市前與上市後,如何確保其安全性與有效性的監管之研究;WP5針對軟體醫材之網路安全進行規範;WP6與WP7涉及加速創新軟體醫材審核上市之特別機制,分別為類似「創新藥品藥證審核與近用途徑」 (innovative licensing and access pathway)的機制,以及允許適時上市並持續研究監控風險的「氣閘分類規則」(airlock classification rule);WP8為確保智慧型手機之健康應用程式安全、有效與品質之規範研究;WP9~WP11則分別針對人工智慧軟體醫材之安全與有效性、可解釋性(interpretability)以及演進式(adaptive)人工智慧進行法規調適之研究。 MHRA預計透過指引、標準、流程之公布而非立法方式實現其監管此領域的目標。MHRA亦透露,針對上述工作項目,其已與重點國家和國際機構進行研究合作,已有不少進展即將公布。