近來美國運輸安全管理局(Transportation Security Administration, TSA)修訂隱私衝擊評估(Privacy Impact Assessment, PIA) 規章,規定機場安全檢查於必要時,可以針對某些特殊旅客強制進行AIT掃描。
美國運輸安全管理局根據航空運輸安全法(Aviation and Transportation Security Act, ATSA) 負責運輸之安全、評估威脅及強制執行安全相關的規定和要求,並且確保機場等交通設備是否有充足的安全措施。
由於國際恐怖攻擊行動頻傳,美國運輸安全管理局於2013年開始採行AIT掃描技術以強化旅客通關之安全檢查,並將會顯示出近乎裸照的3D透視影像全身掃描機器(body scanning machines)淘汰。
所謂的AIT(Advanced Imaging Technology)掃描技術,即係高階圖像技術,可偵測旅客是否有攜帶危險性、威脅性物品,它所顯示出來的影像僅係一個大致輪廓,如有違禁品則會在該部位產生色塊,警告安檢人員應採行進一步檢查措施。
一般而言,雖然旅客可拒絕AIT掃描,選擇讓海關人員進行身體檢查,但是為確保運輸安全,近來運輸安全管理局更新隱私衝擊評估(Privacy Impact Assessment, PIA) 規章,規定於必要時可以針對某些特殊旅客強制進行AIT掃描,旅客不再有拒絕之權利。
此一政策施行,勢必遭受侵害「隱私權」之質疑,運輸安全局表示,AIT掃描係採用「自動目標辨識」 (Automatic Target Recognition , ATR) 軟體,亦即非直接顯示個人影像,僅顯示特殊物體在一般影像上的所在位置,發出警訊後再由安檢人員進行詳細檢查。現今AIT掃描技術已提升,掃描出的人體圖像會被模糊處理,且掃描後機器不會儲存任何可識別個人之資訊,更加確保旅客的隱私權不受侵害。
英國國會於2023年7月上旬通過《電子貿易文件法》(Electronic Trade Documents Act 2023, ETDA),經國王於7月20日正式批准,該法於2023年9月20日正式生效,未來英國的電子貿易文件將與紙本貿易文件具有相同效力。 一直以來,英國僅承認紙本貿易文件的法律上效力,因此英國企業在進行國際貿易的各環節上,必須處理上百頁的紙本文件,造成英國企業及其交易對象必須花費相當高的時間和金錢成本,不僅效率低且造成環境破壞,同時紙本文件也較難驗證其真實性。在數位轉型趨勢下,此類陳舊的法律早已不合時宜,因此美國、新加坡、德國等國家也正在進行類似立法,而英國是七大工業國組織(Group of Seven, G7)中第一個完成立法的國家。 該法正式施行後,可大幅降低英國企業的成本,提升國貿及融資的效率;根據英國政府估計,未來十年,該法將可為英國經濟創造11.4億英鎊的淨效益(net benefit),同時每年可減少10%以上的碳排放量,有助於落實ESG。更重要的是,相對於紙本,貿易文件的數位化,可提升安全性和透明性。 根據該法第2條第2項規定,電子貿易文件必須是由「可信賴系統」(reliable system)所產生,所謂「可信賴系統」必須具備以下特徵: 1.能清楚識別文件,與其他副本加以區分; 2.能防止文件遭到未經授權的修改; 3.確保任何時點僅有一人能對該文件行使控制權; 4.允許能夠對該文件行使控制之人,能向他人「證明」其控制權; 5.確保電子貿易文件移轉後,使前手立即喪失控制權。 此外,第2條第5項列出在判斷一個系統是否可信賴時,可考量的7點因素,其中第5點指出可考量該系統是否經獨立機構定期稽核(包含稽核頻率和範圍),以及第6點為該系統是否經監管機關進行任何可信賴性的評估。 雖然該法基於技術中立(technological neutrality),並未明定何種技術符合「可信賴系統」的要求。然而,起草該法的法律委員會(Law Commission of England and Wales, LCEW)於2022年3月的草案報告中花了相當大的篇幅說明「分散式帳本」(Distributed Ledger Technology, DLT)的技術,並認為DLT在透明性、安全性、不可竄改等面向有較好的表現,因此指出這是「目前」產生可信賴電子貿易文件的重要技術之一。英國政府表示,承認電子貿易文件的法律效力後,國際貿易各環節的參與者可以透過如DLT等技術,更有效地追踪相關紀錄,進而提高國際貿易的安全性和合規性。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國發布網路事件協調準則隨著網路技術的進步,資安事件亦日益加增,為了因應日趨頻繁的網路攻擊,美國總統歐巴馬於2016年7月26日發布了對於美國資安事件發生時聯邦部門間協調之指令(PRESIDENTIAL POLICY DIRECTIVE/PPD-41),該指令不僅提出聯邦政府對於資安事件回應的處理原則,並建立了聯邦政府各部門間對於發生重大資安事件時之協調指引。 指令中就資安事件及重大資安事件進行了定義:資安事件包含資訊系統漏洞、系統安全程序、內部控制、利用電腦漏洞的執行;而重大資安事件則指可能對國家安全利益、外交關係、美國經濟、人民信心、民眾自由或大眾健康與安全發生明顯危害的有關攻擊。 此外,就遭遇資安事件時,列舉出下列幾點作為聯邦政府因應資安事件時之原則:(A)責任分擔;(B)基於風險的回應;(C)尊重受影響者;(D)政府力量之聯合;(E)促進重建及恢復。 聯邦政府機關於因應資安事件時,需同時在威脅、資產及情報支援三方面上做相關之因應。其中司法部透過轄下聯邦調查局(Federal Bureau of Investigation, FBI)、國家網路調查聯合行動小組(National Cyber Investigative Joint Task Force, NCIJTF)負責威脅之回應;國土安全部(Department of Homeland Security, DHS)則透過轄下的國家網路安全與通訊整合中心(National Cybersecurity and Communications Integration Center, NCCIC)負責保護資產之部分,而情報支援部分,則由國家情報總監辦公室(Office of the Director of National Intelligence)下之網路威脅情報整合中心(Cyber Threat Intelligence Integration Center)負責相關事宜。如係政府機關本身遭受影響,則機關應處理該資安事件對其業務運作、客戶及員工之影響。另在遭遇重大資安事件時,為使聯邦政府能有效率因應,指令指出聯邦政府應就國家政策、全國業務及機關間為協調。此外,指令中亦指示國土安全部及司法部應建立當個人或組織遭遇資安事件時得以聯繫相關聯邦機關之管道。 該指令加強了現有政策的執行,並就美國機構組織上於資安事件與現行政策之互動做了進一步之解釋。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
一名挪威學生提供違法音樂下載連結被判侵權一名挪威學生,因執行校內某項計畫而在2001年架設了一個名為Napster.no的網站。該網站和知名的Napster.com並無關聯。由於Napster.no提供了可免費下載MP3音樂的連結,因而使該名學生遭到Universal Music AS等的著作權侵權指控,並被判賠15900美元。案經上訴,日前挪威最高法院已做出判決,下級法院的判決仍被維持。