2016年1月, 隸屬英國商業、創新和技術部 (Department for Business, Innovation and Skills,BIS)的科學辦公室(Government Office for Science)發布「分佈式分類帳技術:區塊鏈以外(Distributed Ledger Technology:beyond block chain)」研究報告。本篇報告由產官學界合作完成,主要在評估分佈式分類帳技術可以運用在哪一些公私領域,並決定政府以及私人應該採取哪些行動以促進分佈式分類帳技術可被有益運用,並避免可能帶來的傷害。
該份研究報告認為,分佈式分類帳技術可在多個領域協助政府機構,包含徵稅、提供福利、發行護照、土地登記、確保商品供應鏈並且確保政府記錄與服務的完整性。相較於其他網路系統,分佈式分類帳技術較不易受駭客攻擊,而且由於每個参與者都有一份帳簿副本,如果有惡意竄改的狀況,也可以輕易被發現,但這不表示分佈式分類帳技術就不會被駭客攻擊。
數位五國(Digital 5,D5)之一的愛沙尼亞,已多年實驗運用分佈式分類帳技術於公領域服務多年。愛沙尼亞政府透過私人公司運用分佈式分類帳技術建制「免金鑰簽名設施(Keyless Signature Infrastructure,KSI)」,KSI允許愛沙尼亞公民驗證其在政府資料庫資訊的完整性,並避免內部人透過政府網路從事非法活動。KSI確保公民資訊安全以及準確,因而可協助愛沙尼亞政府提供數位化的公司登記以及稅務服務,減少政府以及社會大眾的行政作業負擔。
除此之外,分佈式分類帳技術也有助於確保商品以及智慧財產權的所有以及出處。例如Everledger此一系統可用於確保鑽石的身分,從礦產、切割到銷售,可減少並避免欺詐以及「血鑽石」進入市場。
簡而言之,分佈式分類帳技術提供政府可減少詐欺、腐敗、錯誤以及紙上作業成本的框架,並透過資訊分享、公開透明以及信任,具有可重新定義政府與公民關係的潛力。對於私領域而言也具有同樣可能性,報告特別提出可透過分佈式分類帳技術發展「智慧契約」,可增加信任度並提高效率。據此,本報告針對政府部門提出八大建議:
(1) 應成立專責部門,並與產業、學界緊密合作,並應考慮成立臨時性的專家諮詢團隊。
(2) 英國的研究社群應該要投入研究確保分佈式分類帳技術具備可即性、安全性以及內容準確性。
(3) 政府應支持為地方政府成立分佈式分類帳技術實地教學者,匯聚所有測試技術以及其運用的所需元素。
(4) 政府需要思考如何為分佈式分類帳技術建立妥適的法制框架。法規需要配合新科技應用技術的發展而進步。
(5) 政府應該與產學合作確保相關標準可以符合分佈式分類帳技術及其內容完整性、安全性以及隱私的需求。
(6) 政府應與產學合作確保最有效率以及最可用的身分認證網路協議可為個人及組織所使用,這項工作應與國際標準的發展與執行緊密連結。
(7) 政府應對分佈式分類帳技術進行試驗,以評估該項技術在公領域的可行性。
(8) 建議成立跨部門的利益群體,結合分析以及政策群體,以生成並發展潛在使用案例,並且在公民服務中提供具備知識的專家人員。
除了八大建議,管理與法制上,本報告指出分佈式分類帳技術具有兩種管理規範:法律規範以及技術規範。法律規範是「外部」規範,法律規範可能會被違反,緊接著面臨違法處罰的問題。技術規範是「內部」規範,假如違反技術規範,「錯誤(error)」產生無法運作,因此「規範」本身就可以確保會被遵循。換句話說,技術規範可以節省法律規範的執法成本。另外一方面,分佈式分類帳技術為去中心化技術,如果要以法制管理,也只能在参與者身上施加法律義務,例如Bitcoin,只能對於提供Bitcoin交易服務的平台施加法律義務。美國紐約州金融服務部所發行的比特幣交易執照BitLicnese即為一例。因此,基於去中心化的特性,報告建議政府單位應該要儘量参與技術標準的制定,並且配合技術標準制定相關法律,法律規範與技術規範兩者應該要交互影響。
加州聯邦中區地方法院於2014年6月在Jancik v. Redbox Automated Retail, LLC (No. SACV 13-1387-DOC, 2014 WL 1920751 (C.D. Cal. May 14, 2014))一案中,判決影片自動出租機公司Redbox勝訴。法院認為,雖然Redbox在其經營的線上影視串流服務中未提供隱藏字幕(closed captioning),導致聽障者無法藉由閱讀影片字幕來了解劇情,但「網站」非美國身心障礙者法(Americans with Disabilities Act,下稱ADA)第三章「民間事業體所營運之公共設施與服務」中所稱「公共設施」(public accommodation),即無障礙建置範疇不包含提供公眾商品與服務的「網站」,因此業者不須提供具可及性之商品,例如:附字幕影片。法院認為第三章並未就公共設施中商品特色和內容有所規範,因此業者無義務改善其他影片存貨規格,使其能為身障者所觀看;又Redbox線上影視串流服務僅有網路通路,依ADA文義解釋,網站亦非屬於公共設施,無提供無障礙建置之必要。 本案與第一巡迴上訴法院在NAD v. Netflix案見解大相逕庭,該案以「美國國家聽障人士協會」(National Association of the Deaf, NAD)為首之公協會,集體對美國知名線上串流影視節目網站Netflix提起訴訟,控告其線上影視節目未提供隱藏字幕,使得聽障人士無法觀看該影片內容,法院判決該平臺網站屬於「公共設施」,依ADA第302條規範,身心障礙者有權利享受公共設施之設備,不得因殘障而受差別對待。有關網站是否屬於ADA第三章所稱公共設施,而使得私法人有改善網頁無障礙技術義務,仍有待觀察。
美國商務部產業安全局擴大對中國半導體製造設備、軟體工具、高頻記憶體等項目之出口管制.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國商務部產業安全局(Bureau of Industry and Security,簡稱BIS)於2024年12月2日發布《外國生產的直接產品規則補充以及先進運算及半導體製造項目管制精進》(Foreign-Produced Direct Product Rule Additions, and Refinements to Controls for Advanced Computing and Semiconductor Manufacturing Items),並於同日(12月2日)生效,部分管制措施的法律遵循延後至2024年12月31日。BIS開放公眾可以就本次管制提出意見。 因中國的半導體戰略旨在進一步推進中國的軍事現代化、大規模殺傷性武器(WMD)的發展,美國政府認為中國的相關政策與措施,將可能侵害美國及其友盟之國家安全。因此,本次管制之目的旨在進一步削弱中國生產先進節點半導體的能力,包括下一個世代的先進武器系統,以及具有重要軍事應用的人工智慧與先進運算。 為達上述目的,本次管制修正具體擴大的管制項目概述如下: 1. 24種半導體製造設備,包括某些蝕刻(etch)、沉積(deposition)、微影(lithography)、離子注入(ion implantation)、退火(annealing)、計量(metrology)和檢驗(inspection)以及清潔(cleaning)工具。 2. 3種用於開發或生產半導體的軟體工具。 3. 管制源自美國的高頻寬記憶體,以及於美國境外生產且美國管制清單中所列之高頻寬記憶體。 4. 新增對電子電腦輔助設計(Electronic Computer Aided Design)與技術電腦輔助設計(Technology Computer Aided Design)軟體及技術的限制。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)
從思科(Cisco)策略看公司併購全球最大網路設備業者思科(Cisco)公司在去年1月同意以8.3億美元併購以攔截與過濾垃圾郵件著名的軟體供應商IronPort Systems,以強化思科在資訊安全相關軟體方面的實力。思科購入IronPort公司後,不僅可為其客戶提供包括垃圾郵件過濾軟體和其他資安防護軟體,而此一併購案也象徵思科公司除本業的網路設備(router)外,也跨入資安軟體的領域進而挑戰其他大型防毒軟體業者(如賽門鐵克Symantec)。 以併購取得其他公司的商標、專利或人力資源等,在競爭激烈的商場十分常見,本來不足為奇,但此案值得注意的是原本思科公司的併購策略(acquisition strategy)是指派專人,將被併購的公司迅速融入思科體系,除取得原有的資源外,也可以快速地進入市場,此種方式亦是目前大多數廠商所採行的方法。 但自2003年後思科公司開始思考採取不同的併購方式:保留被併購公司的商標與行銷團隊,除可避免併購之後所可能產生的文化衝擊、制度磨合等問題,透過新的方式思科公司仍然獲得極大的收益。近來常聽聞國內的廠商積極併購其他公司,除成本或智慧財產等,管理制度亦是考量的重點之一,或許思科公司的策略可以提供給國內廠商參考。