日本公平交易委員會就反托拉斯法下之智慧財產權之利用指南為部分修正

  於2016年1月21日,日本公平交易委員會(Japan Fair Trade Commission,下稱JFTC)公布了修正後的「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」,就有關標準必要專利權利行使有無違反反托拉斯法之相關問題進一步為解釋,俾利往後企業為商業行為時之參考。以下為其修正概要:一、當標準必要專利權人同意依據FRAND原則授權時,其若再提出訴訟要求排除有意願取得授權者(willing licensee)為該標準必要專利權之利用或是拒絕授權與有意願取得授權者時,該行為會被認定違反反托拉斯法。二、基於一般商業行為所為並善意進行商業談判者,會被認定屬有意願取得授權者(willing licensee),不論其之後是否就該專利有效性為爭執,或是對該專利是否屬實質必要專利為爭執。三、阻止他公司運用該專利進行研究、發展或販賣產品會被認定為不正商業行為,不論該行為是否在商品市場上產生限制競爭或獨占之結果。

  JFTC為了釐清行使智慧財產權時所可能面臨是否違反反托拉斯法之相關問題,於西元(下同)2007年9月8日發布「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」與「標準化與專利池協定指南(Guidelines on Standardization and Patent Pool Arrangements)」。標準必要專利(SEP)之相關爭議原則需依這些指南為判定,但這些指南對於一些表面上屬於權利行使(例如:標準必要專利之權利人所提起之侵權訴訟)的行為定性所提供的解釋卻十分有限。因此JFTC決定修改專利指南,並且公布草案予各方利害關係人表示意見,此乃JFTC於斟酌所得之各方意見後,所為之修正。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 日本公平交易委員會就反托拉斯法下之智慧財產權之利用指南為部分修正, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?no=55&tp=1&d=7169 (最後瀏覽日:2024/04/15)
引註此篇文章
你可能還會想看
歐盟執委會提出資料治理與資料政策

歐盟執委會提出資料治理與資料政策 資訊工業策進會科技法律研究所 2020年10月12日   歐盟執委會(European Commission,以下簡稱執委會)於2020年7月提出「資料治理與資料政策」(Data Governance and Data Policies at the European Commission)[1],旨在說明歐盟執委會將如何透過資料治理及相關政策,轉型為資料驅動型組織(data-driven organization),並提供一致的方向或原則,促進執委會下各政務總署(Directorate-General)及事務部門(Service Department)(以下簡稱相關部門機構)之資料共享。 壹、背景目的   「促成歐洲適應數位時代,並使執委會成為完全數位化、具敏捷性、靈活性與透明性的歐盟組織」是執委會現任主席Ursula von der Leyen所提出的2019年至2024年政策願景之一[2]。隨著數位化發展,透明(transparent)、循證式(evidence-based)的決策需運用人工智慧資料分析技術,「資料」是直接影響人工智慧運用於政策決定的關鍵要素。欲提升人工智慧運用結果被信賴的程度,首先必須有可查找(findable)、可近用(accessible)、可互通(interoperable)、安全(secure)且高品質(high-quality)的資料。歐盟機構內部資料、資訊與知識的共享與治理,有助於此願景之達成。   因此,執委會提出「資料治理與資料政策」,建立執委會統一的資料治理架構與政策原則,幫助執委會轄下相關部門機構共同遵循資料管理(data management)、資料近用、資料保護、智慧財產權、資訊安全等相關法律與監理要求。同時,執委會亦期能藉此優化資料建立(creation)、蒐集(collection)、取得(acquisition)、存取(access)、利用(use)、處理(processing)、共享(sharing)、保存(preservation)與刪除(deletion)等資料生命週期必經流程,改善資料品質,提升資料管理及共享之效率。 貳、內容摘要   「資料治理與資料政策」的適用範圍為執委會及其相關部門機構所擁有、利用或再利用的資料集,包括政策決定所使用的資料、行政資料與個人資料。在「資料治理與資料政策」的執行上,則導入「遵守或解釋」(comply-or-explain)原則,除非法律明示規定為選擇性適用,否則執委會轄下相關部門機構皆需遵守;倘未遵守,則需就無法遵守的原因提出解釋。以下分別就「資料治理」與「資料政策」兩大部分重點說明。 一、資料治理   主要目的在建構執委會統一的資料治理架構,釐清相關角色的責任與相互依賴關係。依角色與任務的不同,執委會將資料治理分為三層級,並由秘書總署集體治理團隊(Secretariat-General corporate governance team)支援三層級的執行工作。 (一)策略層級(strategic level)   由資訊管理指導委員會(Information Management Steering Board, IMSB),處理資料治理與資料政策相關議題,界定長期推動願景、提供政策方向、監督推動與執行之進程,並作出策略決定。 (二)管理階層(managerial level)   由資料議題相關的組織、委員會、團體所組成之資料協調小組(data coordination groups)、各地區資料聯絡窗口(local data correspondent)、執委會各相關部門機構下的資料治理委員會(data governance board),以及策略層級就各資料集所指定之資料擁有者(data owner),依策略層級所提出之願景與政策方向,在各處建立並執行資料政策、監督執行進度,並向策略層級報告執行進度及任何超出其決策權限之問題。 (三)運作階層(operational level)   由資料擁有者選出或指派資料管理員(data steward),並與資料利用者(data user)實際執行資料政策,必要時將相關議題提到管理層級解決。 二、資料政策   就資料管理(data management)、資料互通性與標準(data interoperability and standards)、資料品質(data quality)、資料保護與資訊安全(data protection and information security)等核心面向,建立上位原則。   其中關於「資料管理」部分,又依資料生命週期細分。例如在「資料集建立、蒐集或取得」方面採取一次性原則,故執委會轄下相關部門機構在建立、蒐集或取得資料之前,需探詢必要資料或資訊是否已存在,避免重複取得。主要需求資料集的部門機構,應協助讓其他執委會相關部門機構或歐盟機構也獲得使用該資料集之權利。又例如「資料集存取、使用與共享」方面,除非歐盟相關的執委會決定、指令或規則另有規定[3],否則以「需要共享」(need to share)或「預設共享」(share by default)為原則,並使用一致化的資料管理與視覺化工具或資料平台。   針對「資料互通性與標準」與「資料品質」兩部分,著重在執委會內部的共通一致性,包括資料格式、資料相關詞彙、資料品質的定義與量測等。而在「資料保護與資訊安全」方面,則強調「歐盟機關個人資料保護規則」[4]相關義務,以及歐盟資料保護監督機關(European Data Protection Supervisor, EDPS)所提相關指引之遵循。 參、簡析   觀察歐盟執委會的「資料治理與資料政策」,可知其資料治理架構與相關政策,是以形成一個資料共享再利用生態系為藍圖。除了強調資料一次性建立及資料預設共享等原則,更從組織管理角度,界定不同單位或角色的任務與責任,並凸顯資料治理管理組織的建構,對資料政策執行之重要性。   我國政府長期致力於數位國家之發展,在政府資料開放政策推動上已有不少成果,例如建立政府資料開放平台、訂定各級機關資料開放作業原則、統一資料開放格式等。為持續厚植數位國家的資料應用能量,建議未來可進一步完善政府資料治理構面,兼納「政府對民眾之資料開放」及「公務機關間之資料共享」等面向,借鏡歐盟執委會之作法,確立資料共享再利用之管理架構及原則,提升政府資料應用的效率與效能。 [1] EUROPEAN COMMISSION, Data Governance and Data Policies at the European Commission (2020), https://ec.europa.eu/info/sites/info/files/summary-data-governance-data-policies_en.pdf (last visited Oct. 5, 2020). [2] See Ursula von der Leyen, My Agenda for Europe: Political Guidelines for the Next European Commission 2019-2024 (2019), https://ec.europa.eu/commission/sites/beta-political/files/political-guidelines-next-commission_en.pdf (last visited Oct. 8, 2020). [3] 例如歐盟執委會決定Commission Decision 2011/833/EU、歐盟規則Regulation (EC) No 1049/2001及歐盟指令Directive (EU) 2019/1024等,有關近用歐盟資料之例外規定。 [4] Regulation on the Protection of Natural Persons with regard to the Processing of Personal Data by the Union Institutions, Bodies, Offices and Agencies and On the Free Movement of Such Data, and Repealing Regulation (EC) No 45/2001 and Decision No 1247/2002/EC, Council Regulation 2018/1725, 2018 O.J. (L295) 39.

美國網路安全暨基礎設施安全局(CISA)成立聯合網路防禦協作機制(Joint Cyber Defense Collaborative,JCDC),將領導推動國家網路聯防計畫

  美國網路安全暨基礎設施安全局(Cybersecurity and Infrastructure Security Agency,以下簡稱CISA)於2021年8月宣布成立聯合網路防禦協作機制(Joint Cyber Defense Collaborative,以下簡稱JCDC),依據《國防授權法》(National Defense Authorization Act of 2021, NDAA)所賦予的權限,匯集公私部門協力合作,以共同抵禦關鍵基礎設施的網路威脅,從而引領國家網路防禦計畫的制定。   聯合網路防禦協作辦公室(JCDC's office)將由具代表性的聯邦政府單位所組成,包括國土安全部(Department of Homeland Security, DHS)、司法部(Department of Justice, DOJ)、美國網路司令部(United States Cyber Command, USCYBERCOM)、國家安全局(National Security Agency, NSA)、聯邦調查局(Federal Bureau of Investigation, FBI)和國家情報總監辦公室(Office of the Director of National Intelligence, ODNI)。此外,JCDC將與自願參與的夥伴合作、協商,包括州、地方、部落和地區政府、資訊共享與分析組織和中心(ISAOs/ISACs),以及關鍵資訊系統的擁有者和營運商,以及其他私人企業實體等(例如:Microsoft、Amazon、google等服務提供商)。   目的在藉由這項新的合作機制,協調跨聯邦部門、各州地方政府、民間或組織等合作夥伴,來識別、防禦、檢測和應對涉及國家利益或關鍵基礎設施的惡意網路攻擊,尤其是勒索軟體,同時建立事件應變框架,進而提升國家整體資安防護和應變能力。   是以,JCDC此一新單位有以下特點: 具獨特的公私部門規劃要求和能力。 落實有效協調機制。 建立一套共同風險優先項目,並提供共享資訊。 制定、協調網路防禦計畫。 進行聯合演練和評估,以妥適衡量網路防禦行動的有效性。   而JCDC主要功能,整理如下: 全面、全國性的計畫,以處理穩定操作和事件期間的風險。 對情資進行分析,使公私合作夥伴間能採取應對風險的協調行動。 整合網路防禦能力,以保護國家的關鍵基礎設施。 確保網路防禦行動計畫具有適當性,以抵禦對方針對美國發動的網路攻擊。 計畫和合作的機動性,以滿足公私部門的網路防禦需求。 制度化的演練和評估,以持續衡量網路防禦計畫和能力的有效性。 與特定風險管理部門(Sector Risk Management Agencies, SRMAs)密切合作(例如:國土安全部-通訊部門、關鍵製造部門、資訊技術等),將其獨特專業知識用於量身定制計畫,以應對風險。

日本印章制度與電子署名法修正

  日本國會於2021年2月9日正式提出「數位社會形成基本法草案」(デジタル社会形成基本法案),立法目的為提升國家競爭力、國民生活便利性,以建置一個「數位社會」,基本原則為降低數位落差,而降低數位落差之重要手段即包括日本印章制度之改革。   日本政府對印章制度之改革,可分為「取消蓋章制度」及「增加電子簽章使用率」二條路線。由於新冠疫情(COVID-19)影響全球工作型態,日本政府為推動電子化服務,考慮取消印章使用,因為其徒增商業活動成本,亦可能提升染疫風險。日本行政改革大臣河野太郎在2020年11月13日內閣會議後之記者會上即表示,約1萬5000種需要使用印章的行政服務中,絕大多數將取消蓋章制度。「數位社會形成基本法草案」亦預告將修改48部要求使用印章之法律,本草案及相關修法將於2021年9月正式通過施行。   電子簽章使用方面,日本在野黨聯盟於2020年6月提出「電子署名及認證業務法一部修正草案」(電子署名及び認証業務に関する法律の一部を改正する法律案)。依照現行規定,電子簽章須本人以一定方式簽署始可推定為真正,推定真正之條件過度嚴苛,便利性未優於實體蓋章,致使電子簽章使用普及度低落。本草案則降低推定門檻,僅須以特定電子方式簽署即有推定真正效力,使電子簽章簽署人身分驗證更為容易。目前法案仍在眾議院提案階段,尚未經國會表決通過,後續發展值得關注。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP