美國國會將跟進加州與馬里蘭州 立法禁止商家禁止或限制消費者於評價網站上散佈負面評價

  看準消費者利用網路就其各別消費經驗進行評論的商機,不少業者紛紛提供專門作為消費評論的網路平台服務,例如美國最大評論網站yelp以及臺灣的「愛評網」等評論網站。然而,消費者若在網路上就其消費經驗對特定商家發表負面評論,難免對於商家的商譽或營業表現造成影響,因此部分商家試圖利用各種手段避免消費者於熱門評論網站中發表負面評論。最常見的手段為商家藉由其與消費者間的契約中加入「禁止負面評論約款」(Nondisparagement Clause),向發表負面評論的消費者或經營評價網站的業者主張其契約上的權利,但該作法也導致消費者與商家間的法律層出不窮。

  較為人所知的爭議案例為,一間位於紐約市的酒店因至該酒店參加婚宴的顧客於Yelp等評論網站上留下諸多負面評價,該酒店即依據契約向使用場地舉辦婚宴的新婚夫妻, 以每一則負面評價500美元為計,收取一筆高額的賠償金。另有較特別的案例為,紐約市有一名牙醫師於其與診所病患間的契約中明訂授權約款,將任何病患可能於就診後作成的負面評價,以著作權授權的方式授予該名牙醫師,而該名牙醫師復以被授權人的身分,依據該契約向Yelp等消費評價網站主張刪除網站上針對其所營診所的相關負面評價。

  因應愈來愈多的商家藉各種手段試圖限制消費者在熱門評價網站上發表負面的消費經驗或評論,加州議院於2014年9月正式表決通過並由該州州長簽署,於民法中增訂第1670.8條(California Civil Code §1670.8)之規定,使消費者發表消費評論之自由能夠受到更完整的保障。依據該法之規定,消費者有權對其所消費商品或服務的出賣人、出租人或其受僱人與代理人發表陳述(statement);若任何契約禁止或限制消費者發表與其消費經驗相關評論之權利,則該契約應屬無效。總檢察長(Attorney General)以下的檢察官或個案消費者可透過民事程序向違反該法律規定者起訴,法院最高可以將行為人處以初犯2500元美金以及累犯每次5000美元的罰款。

  馬里蘭州議會亦於2016年2月表決通過於該州《商業法》(Commercial Law)中增訂14.1325條(MD. Comm. Law gcl. §14.1325),該州法規定與上述加州州法同樣保障消費者對其消費經驗加以評論之權利,且違反該法的行為人除了將負擔1000美元及累犯每次5000元美金的罰款之外,若構成輕罪(misdemeanor)則可能被處以一年以下的拘禁,且得併科1000美元罰金。

  除了上述二州對保障消費者消費評論的法制加以強化之外,美國國會也正在進行相關的立法工作。聯邦參議院於2015年12月表決通過《2015年消費者評論自由法》(Consumer Review Act of 2015),該法案(H.R.2110, 114th Cong. (2015-2016))目前於聯邦眾議院的「工商業與貿易委員會」(Subcommittee on Commerce, Manufacturing, and Trade)中待審。該部聯邦法除了將使任何禁止或限制消費者以任何方法評論商品或服務的契約效力歸於無效之外,更禁止商家與消費者約定移轉任何關於消費經驗評論的智慧財產權。

相關連結
※ 美國國會將跟進加州與馬里蘭州 立法禁止商家禁止或限制消費者於評價網站上散佈負面評價, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7199&no=57&tp=1 (最後瀏覽日:2025/11/08)
引註此篇文章
你可能還會想看
美國聯邦地區法院宣告伊利諾州之電玩遊戲法案違憲

  美國聯邦地區法院於 12月初對伊利諾州禁止商家販售或出租色情及暴力電玩遊戲予未成年人,如有違反將會處以美金1000罰金之規定做出判決,宣告該等法律規定違憲,並對其執行發出禁止令。   法官指出該等規定將對電玩遊戲的創作以及發行造成寒蟬效應,沒有證據可以證明暴力電玩遊戲會對未成年遊戲者造成持續性的負面影響,使其思想和行為具有侵略性,且其對色情的定義並不是很明確。由於此等規定已對於電玩遊戲業者之言論自由造成限制,但是並沒有實質重大的理由得以支持該等限制,故宣告該等規定違憲,並對其執行發出禁止令。   伊利諾州一案並不是美國法院第一遭禁止相關電玩遊戲規定之執行的判決,於今年 11月時,美國法院即曾禁止密西根州執行禁止商家販售暴力電玩遊戲之規定。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐盟發布《營業秘密訴訟趨勢報告》指出,企業應明確界定營業秘密範圍與強化保密措施之落實

歐盟智慧財產局(EUIPO)於2023年6月底發布了《歐盟營業秘密訴訟趨勢報告》(Trade Secrets Litigation Trends in the EU),本報告包含三大部分,分別為判決之量化分析、法律要件之質化分析、各會員國之重要判決摘要,內容涵蓋了2017年1月1日至2022年10月31日間,27個會員國的695個訴訟案件。其重點摘要如下: 一、案件涉及之類型分析 1、約41%的案件與離職員工有關。 2、約17%的案件與商業合作對象有關。 3、約30%的案件雙方無明確的契約關係(但報告中指出此項統計包含員工離職後自行創業,原告以該離職員工及該公司為被告的情況)。 二、案件涉及之營業秘密標的分析(同一訴訟案件可能包含多個標的) 1、約62%的標的為「商業性營業秘密」。其中配銷通路(distribution methods)、廣告策略、行銷資料、客戶名單等供應鏈「下游資訊」(downstream information)占31%最多;定價模式及會計資料等「財務資訊」占13%次之。 2、約33%的標的為「技術性營業秘密」,其中有19%與「製程」(manufacturing process)有關。 3、僅3%的標的為原型(prototypes)或尚未公開的產品設計。 三、案件涉及之產業別分析(根據「歐盟標準行業分類第二修正版NACE Rev. 2」分類) 整體來說,歐盟營業秘密訴訟案件所涉及的產業別相當多元,簡要說明如下: 1、排名第一的產業別為「製造業」(manufacturing),占32%。其中最常涉訟的子產業別為「機械設備製造業」(manufacture of machinery and equipment)及「化學製品製造業」(manufacture of chemicals and chemical products)。 2、排名第二的產業別為「批發及零售業;汽機車維修業」(wholesale and retail trade;repair of motor vehicles and motorcycles)占11%。 3、排名第三的產業別為「金融及保險業」(financial and insurance activities)及「專業、科學及技術服務業」(professional, scientific and technical activities),分別占7%。 四、被告提出之抗辯分析 報告中指出,原告提出之營業秘密主張被法院採認的比例僅27%,有約73%的案件法院最終是做出有利於被告的認定。而被告最常提出的抗辯,第一為抗辯原告所主張之系爭資訊是普遍共知(generally known),不具備秘密性;第二為抗辯原告未採取合理保密措施。 最後,報告結論分析歐盟營業秘密判決的三大趨勢,其中一項趨勢指出,營業秘密所有人若要強化契約措施(如保密協議)於訴訟中的證明力,應明確識別與界定系爭營業秘密的範圍。因此,企業應建立營業秘密管理的整體政策(譬如與員工簽訂之勞動契約中,應明確界定其保密義務範圍;員工離職時應落實離職面談,再次提醒員工應遵守的保密義務範圍等),以便於發生爭議時有效主張權利。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

日本有關循環經濟新法規「塑膠資源循環促進法」將於2022年4月1日正式上路

  日本率先亞洲地區將於2022年4月1日實施「塑膠資源循環促進法」(プラスチック資源循環促進法),其係著重於產品設計階段至塑膠廢棄物排放、再利用等整個產品生命週期,來促進塑膠資源循環運用,主要措施內容包括: ①抑制塑膠廢棄物的排放、再資源化的環境設計(該法第1、2章) ②一次性利用塑膠產品的使用合理化(該法第3、4章) ③塑膠廢棄物的分類收集、自主回收、再資源化(該法第5、6、7章) 例如:   設計、製造階段,有明示塑膠製產品設計指導方針,可透過減少塑膠用量來製作產品、調整尺寸和形狀方式,進行塑膠製產品之設計,並創建國家優秀設計認定制度,被國家認定之產品,可獲得政府優先購買,會提供消費者資訊使其更容易選擇環保產品。   使用階段則要求企業經營者合理化提供免洗餐具等12種一次性塑膠製產品,其指導方針有是否採取有償方式提供、或是否有回饋措施予拒用免洗餐具之消費者等措施。   塑膠廢棄物處理階段,係指針對排出塑膠廢棄物之企業經營者有責任妥善處理塑膠廢棄物等,倘企業經營者在其選擇之措施中有顯著不足情形,國家會以勸告、命令方式命其改善。   回收、再利用階段,則是針對塑膠回收類型作最小限制,本制度設立了對該塑膠廢棄物進行再商品化的機制,重新修改分類規則,擴大塑膠資源的回收量,且針對回收自治體得補貼地方交付稅等部分費用,減輕其成本。

TOP