美國國會將跟進加州與馬里蘭州 立法禁止商家禁止或限制消費者於評價網站上散佈負面評價

  看準消費者利用網路就其各別消費經驗進行評論的商機,不少業者紛紛提供專門作為消費評論的網路平台服務,例如美國最大評論網站yelp以及臺灣的「愛評網」等評論網站。然而,消費者若在網路上就其消費經驗對特定商家發表負面評論,難免對於商家的商譽或營業表現造成影響,因此部分商家試圖利用各種手段避免消費者於熱門評論網站中發表負面評論。最常見的手段為商家藉由其與消費者間的契約中加入「禁止負面評論約款」(Nondisparagement Clause),向發表負面評論的消費者或經營評價網站的業者主張其契約上的權利,但該作法也導致消費者與商家間的法律層出不窮。

  較為人所知的爭議案例為,一間位於紐約市的酒店因至該酒店參加婚宴的顧客於Yelp等評論網站上留下諸多負面評價,該酒店即依據契約向使用場地舉辦婚宴的新婚夫妻, 以每一則負面評價500美元為計,收取一筆高額的賠償金。另有較特別的案例為,紐約市有一名牙醫師於其與診所病患間的契約中明訂授權約款,將任何病患可能於就診後作成的負面評價,以著作權授權的方式授予該名牙醫師,而該名牙醫師復以被授權人的身分,依據該契約向Yelp等消費評價網站主張刪除網站上針對其所營診所的相關負面評價。

  因應愈來愈多的商家藉各種手段試圖限制消費者在熱門評價網站上發表負面的消費經驗或評論,加州議院於2014年9月正式表決通過並由該州州長簽署,於民法中增訂第1670.8條(California Civil Code §1670.8)之規定,使消費者發表消費評論之自由能夠受到更完整的保障。依據該法之規定,消費者有權對其所消費商品或服務的出賣人、出租人或其受僱人與代理人發表陳述(statement);若任何契約禁止或限制消費者發表與其消費經驗相關評論之權利,則該契約應屬無效。總檢察長(Attorney General)以下的檢察官或個案消費者可透過民事程序向違反該法律規定者起訴,法院最高可以將行為人處以初犯2500元美金以及累犯每次5000美元的罰款。

  馬里蘭州議會亦於2016年2月表決通過於該州《商業法》(Commercial Law)中增訂14.1325條(MD. Comm. Law gcl. §14.1325),該州法規定與上述加州州法同樣保障消費者對其消費經驗加以評論之權利,且違反該法的行為人除了將負擔1000美元及累犯每次5000元美金的罰款之外,若構成輕罪(misdemeanor)則可能被處以一年以下的拘禁,且得併科1000美元罰金。

  除了上述二州對保障消費者消費評論的法制加以強化之外,美國國會也正在進行相關的立法工作。聯邦參議院於2015年12月表決通過《2015年消費者評論自由法》(Consumer Review Act of 2015),該法案(H.R.2110, 114th Cong. (2015-2016))目前於聯邦眾議院的「工商業與貿易委員會」(Subcommittee on Commerce, Manufacturing, and Trade)中待審。該部聯邦法除了將使任何禁止或限制消費者以任何方法評論商品或服務的契約效力歸於無效之外,更禁止商家與消費者約定移轉任何關於消費經驗評論的智慧財產權。

相關連結
※ 美國國會將跟進加州與馬里蘭州 立法禁止商家禁止或限制消費者於評價網站上散佈負面評價, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7199&no=64&tp=1 (最後瀏覽日:2026/01/05)
引註此篇文章
你可能還會想看
英國國家統計局政府資料品質中心發布《政府資料品質框架》

  英國國家統計局(Office for National Statistics)轄下之政府資料品質中心(Government Data Quality Hub)為實踐英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)發布之《國家資料戰略》(National Data Strategy),於2020年12月3日釋出《政府資料品質框架》(The Government Data Quality Framework),以達成國家資料戰略中「資料基礎(Data Foundation)」之核心目標。該框架提出「資料品質原則」(Data quality principles),旨在解決目前政府資料品質低落的問題。該原則包含以下五點: 一、確保資料品質:機關內部應建立有效的資料治理機制,例如培訓員工具備管理資料的能力、持續改進資料品質等。 二、了解使用者需求:機關應將使用者對資料品質的需求視為優先處理事項。 三、評估資料於資料生命週期各階段之品質:機關應密切關注資料於生命週期各階段之品質,並與使用者及利益關係人交換意見。 四、持續溝通資料品質:機關應持續與使用者交流資料品質現況,提供使用者有效的文件及中繼資料(metadata)。 五、了解造成資料品質低落的主因:分析造成資料品質低落的根本原因,從源頭徹底解決資料品質問題。   英國國家統計局政府資料品質中心希望藉由本框架揭示的資料品質原則,提升政府機關人員主動辨別及解決資料品質問題的能力,以改善政府資料品質、為人民帶來更高品質的資料,釋放資料價值並促進社會經濟發展。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

Ofcom第八次電信與付費電視申訴報告

  Ofcom在今(2013)年3月公佈「2012年第四季電信與付費電視申訴報告書」(Telecoms and Pay TV Complaints Q4 2012),以履行2003年通信法(Communications Act 2003)第26條規定:Ofcom應公布通訊資訊與建議於消費者。是故,為維護消費者之權益,並促進市場競爭,Ofcom從2011年4月起每季公佈「電信申訴報告書」 (Telecoms Complaints);同年10月修訂為「電信與付費電視申訴報告書」(Telecoms and Pay Tv Complaints)。這份報告書不僅協助消費者選擇較好供應商,更意在促進業者服務品質,而從幾次報告書中顯示,業者們被投訴量確實持續下降,可見效果斐然。   Ofcom選擇市占率超過4%、且每月被投訴超過30次的市話、固網寬頻、行動通信服務(月租),與付費電視為調查對象,以維護統計信度。當消費者申訴具有綑綁式服務(bundled services)業者,則視其申訴是否涵蓋多種服務,以Sky同時具有電話、網路服務為例,當民眾申訴廣告不實後,則此申訴僅被記錄於網路服務。由於,民眾申訴範圍相當廣泛而難以統整,Ofcom僅向外界公布業者被投訴的次數,且有下述研究限制: 1.Ofcom僅蒐集本身受理的申訴數據,而其他組織、供應商所受理的,一概不納入報告書。 2.Ofcom雖力求數據的合理性,但不會檢驗消費者投訴的真實性。 3.當Ofcom倡導某些政策時(例如打及廣告不實),可能會導致某些業者申訴量提高。   在這次報告中,各領域被投訴最多的業者如下:Talk Talk於市話服務被投訴最多,被投訴的理由多數為服務缺失與相關服務爭議。Orange則在固網寬頻、行動通信服務(月租)受到最多申訴,其原因是Orange採取民眾購買寬頻服務後,方得再取得免費網路,以取代原本免費網路的提供。在付費電視上,則是BT Vision受到最多申訴,而內容多為提供服務與處理申訴之缺失。Ofcom期以公佈這些資訊,讓消費者得於每個領域選擇最好的供應商。

美國「刑事鑑識演算法草案」

  美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容: 一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。 二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。 三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。 四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。 五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。

TOP