世界智慧財產權組織(WIPO)2005年之國際專利申請量再創新高

  根據WIPO之統計,去年(2005)國際專利之申請件數再創新高,共有134,000PCT申請案,較上一年增加9.4%。其中,相較於2004年,前五大國際專利申請國仍為美國、日本、德國、法國以及英國。值得注意的是,韓國超越荷蘭,成為WIPO的第六大國際專利申請國;而中國大陸則是擠下加拿大、義大利以及澳大利亞成為第十大PCT申請國。


  此外,成長速度最顯著的國家連續兩年都來自東北亞,分別為日本(18.8%)、韓國(3.5%)以及中國大陸(1.8%),該三國共佔WIPO國際專利申請件數之24.1%。而歐洲專利公約(European Patent Convention)締約國之申請件數則佔34.6%,位居第一位的美國申請件數則佔33.6%


  
日本、韓國、中國大陸之成長速度極為突出,顯示這些國家的技術強度正快速擴張。自2000年以來,日本、韓國、中國大陸的申請量分別成長了162%200%以及212%”,於WIPO中掌管PCT工作之副主任Francis Gurry表示。


  其他排名國際專利申請案前五大之國家於
2005年申請案件成長率分別為美國的3.8%;德國的4%;法國的6.6%;英國的1.5%。而排名前十五大的國家中,成長率達到二位數的有澳大利亞(排名第十三)10.%以及芬蘭(排名第十四)11.6%

相關連結
※ 世界智慧財產權組織(WIPO)2005年之國際專利申請量再創新高, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=721&no=55&tp=1 (最後瀏覽日:2025/12/24)
引註此篇文章
你可能還會想看
既有建築改善翻新措施─德國政策參考

既有建築改善翻新措施─德國政策參考 科技法律研究所 2013年07月11日 壹、事件摘要   內政部於6月20日公布資訊指出,我國為達成環境永續發展之目標,於1999年開始推行綠建築標章評估系統,迄今已有3,943件新建或既有建築,取得綠建築標章或候選綠建築證書,每年皆可有效節水與節電;同時,自2003年起,針對既有中央辦公廳舍及國立大專院校所辦理的改善翻新,亦具有顯著的節能減碳成果。 貳、重點說明   為因應全球暖化與氣候變遷問題,我國針對建築部門推動許多兼顧節能減碳與生態保護的綠建築政策。首先,內政部在1999年針對新建建築之規劃設計,訂定綠建築標章評估系統。行政院另於2001年3月核定「綠建築推動方案」,率先實施對公部門新建及既有建築之綠化工作,內政部並依據該方案實施方針第7條,推動「綠廳舍暨學校改善補助計畫」。接著,為了強化民間產業投入綠建築,行政院再於2008年1月核定「生態城市綠建築推動方案」,依據該方案實施方針第11條「辦理綠建築更新診斷與改造計畫」,繼續推動既有中央辦公廳舍及國立大專院校建築物之改善翻新。此外,為鼓勵民間既有建築參與綠建築改善,並於100年1月訂定內政部獎勵民間綠建築示範作業要點。   由上述政策發展可以看出,我國既有建築之改善翻新,乃循公部門先帶頭示範,再輔以對民間建築給予獎勵補助,與歐美等先進國家政策推動模式一致。 參、事件評析   根據統計,我國既有建築約佔全國建築總量97%,這些早期建造的建築物,於設計規劃之初皆未納入綠建築之概念。因此,雖然許多既有建築仍舊堪用,但建築本身卻普遍存在著高耗能問題。這使得推動既有建築進行改善翻新,提升其能源效率,成為一重要議題。而依內政部公布之資訊,公部門既有建築改善翻新獲得卓越之成效,確實令人欣喜。然而,公部門既有建築畢竟仍屬少數,故如何推動民間既有建築進行改善翻新,會是我國落實綠建築政策的關鍵。在此,本文將介紹德國政府之相關政策,希望能供我國作參考。   在既有建築改善翻新政策中,德國政府同樣先要求公部門建築必須進行改善翻新,以逐年降低其能源消耗量。與此同時,德國政府也認知到有超過75%的既有建築,至今仍未進行改善翻新。因此德國交通、建築暨都市發展部(Bundesministerium für Verkehr, Bau und Stadtentwicklung, BMVBS,簡稱交通部)推出了降低二氧化碳排放的建築改善翻新方案,不僅給予補助,更與德國復興信貸銀行(Kreditanstalt für Wiederaufbau, KfW)合作,提供改善翻新的低利率貸款。   今年6月1日,為了促進民眾積極採取「具體的」改善翻新行動,交通部與德國聯邦經濟暨技術部(Bundesministerium für Wirtschaft und Technologie, BMWi,簡稱經濟部)共同推出建築節能改善翻新的線上評估服務。讓民眾即使在家中,也可以進行節能與節省成本的行動。 該線上評估服務分為三大步驟,首先,必須輸入建築物的狀態。接著,便可以選擇欲改善翻新的項目及措施。最後,系統會產生整體改善翻新的結果,包括改善翻新前後的能源需求狀態、二氧化碳排放量,以及改善翻新所需經費,並提供聯邦、邦政府財政補助及KfW貸款方案的連結。   德國政府希望藉此向民眾傳達改善翻新的好處,在於節能、節省長期的能源成本,並增加建築物之價值。儘管德國政府在此線上評估服務網站上表明,評估結果僅供參考,並無法取代專業能源顧問的具體評估建議。然而,事先透過簡單、便利的線上評估,不僅增加民眾對於既有建築改善翻新的瞭解及興趣,更是進一步驅動民眾尋求專業評估的動力。   由此可知,節能減碳若要具體落實,全面性的規劃絕對是必要的。我國若能以德國的政策為借鏡,給予民眾更多關於既有建築改善翻新的協助,提供更多資訊。相信可以鼓勵更多民眾自主投入既有建築節能之行列,使我國綠建築政策獲得全面性的落實。

加拿大批准並加入《專利法條約》

  加拿大於2019年7月30日批准並正式加入國際智慧財產權組織(World Intellectual Property Organization,下稱WIPO)的《專利法條約》(Patent Law Treaty, PLT)。為加入《專利法條約》,加拿大智慧財產局2018年12月1日即公告新修正的專利法,而修正後的專利法和新的專利細則即將在2019年10月30日生效,而這些新修正的條文會確保加拿大落實《專利法條約》。專利權採屬地主義,亦即在一個國家授予的專利權,僅在該國法律管轄的範圍內有效,對其他國家沒有拘束力。原先,若在加拿大申請專利要再申請他國專利,僅有12個月的優先權(right of priority);加入《專利法條約》後,在加拿大進行國際申請(international application),即可在其他會員國擁有國際申請期日(international filing date)起算至少30個月的優先權。   近年來,加拿大智慧財產權局積極規畫參與五項WIPO的智慧財產權條約,以減少繁瑣的行政負擔,包括:工業設計的《海牙協定》(Hague Agreement)、商標的《馬德里議定書》(Madrid Protocol)、《新加坡條約》(Singapore Treaty)、《尼斯協定》(Nice Agreement)和專利的《專利法條約》。《專利法條約》是加拿大計畫參與的WIPO智慧財產權條約中最晚完成的一項。加拿大希望透過加入《專利法條約》並修正國內專利行政流程以提升申請流程之效率,進而活絡商業活動;同時也確保《專利合作條約》(Patent Cooperation Treaty, PCT)締約國權利的完整性。2000年於日內瓦通過的《專利法條約》宗旨在於:協調並簡化國家和地區專利申請和專利維護的形式程序;1978年生效的《專利合作條約》則是提高締約國的專利申請程序一致性。儘管《專利法條約》締和《專利合作條約》是兩個獨立的條約,都是WIPO之協定,相輔相成,健全世界專利體系─《專利法條約》締約國在修改內國法規以符合要求後,會更趨近於《專利合作條約》改善專利申請程序的理想。

日本文化廳發布《人工智慧著作權檢核清單和指引》

日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP