加拿大安大略省議會於2016年5月三讀通過修正健康資訊保護法(Health Information Protection Act, HIPA)。該法案藉由一連串措施,包括增加隱私保護、問責制與提升透明度,以提高病人地位。
1.在符合指令定義內,將違反隱私之行為強制性地通報與資訊與隱私專員;
2.強化違反個人健康資訊保護法之起訴流程,刪除必須於犯罪發生之六個月內起訴之規定;
3.個人犯罪最高額罰款提升到50,000元至100,000元,組織則為250,000元至500,000元。
而健康資訊保護法也將更新照護品質資訊保護法(Quality of Care Information Protection Act, QCIPA),有助於提升透明度,以保持醫療系統的品質,更新內容包括:
1.確認病患有權得知其醫療相關資料;
2.釐清不得對關於受影響的病患與家屬保留重要事項之資訊與事實;
3.要求健康與長照部(Minister of Health and Long-Term Care)每五年定期審查照護品質資訊保護法。
安大略省亦正著手研究由專家委員會提出,所有關於提升照護品質資訊保護法所稱重大事故透明度之建議。
藉著透過該目標,將可提供病患更快的醫療,更好的家庭與社區照顧,安大略政府希望可以透過上開手段以保護病患隱私以及加強其資訊透明度。
新加坡生物道德諮詢委員會五日發表基因檢驗與研究道德準則草案,草案建議政府禁止基因研究者在未獲得同意之下取得基因進行測試與研究,同時也禁止採用基因檢驗來選擇胎兒的性別。新加坡生物道德諮詢委員公布基因檢驗與研究道德準則草案,共提出二十四項建議,希望能在研究人員從事基因研究時,保障人權。 草案建議政府,任何基因測試除非獲得基因所有人同意,否則不得進行。,產前基因篩檢只能限於確保孩子的健康,不要把先天性疾病遺傳給下一代,但不能用在選擇生男或生女。草案規範,研究員或醫生不能把基因研究結果透露給第三者,包括雇主和保險公司知道,以保障個人隱私。 委員會已經把草案公布在網站上供民眾查閱,並分送給一百一十四個機構,徵詢公眾和機構的看法;委員會將在年底向星國生命科學部長級會議提出報告。
智慧綠建築推動方案之修正—新增公有新建建築物應符合綠建築指標 日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。 本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。 報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。
美國情報體系發布「情報體系運用人工智慧倫理架構」美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。