巴拿馬避稅文件被揭露後,引發歐洲議會(European Parliament)重新檢視正待審核的歐盟營業秘密指令草案(the proposed Directive on Trade Secrets Protection),避免企業營業秘密之保護影響揭弊人(whistleblowers)舉發企業弊端之意願。
執委會2013年11月正式提出歐盟營業秘密指令草案,目的為調合歐洲內部市場營業秘密規範,以建立保護創新者的環境,並維持歐洲企業競爭優勢。2015年12月執委會、歐洲議會及理事會(the Council of the European Union)召開三方會議協商,對於歐盟營業秘密指令內容達成共識,準備進入立法表決。
巴拿馬事件發生後,公民團體Corporate Europe Observatory之代表Martin Pigeon認為,歐盟營業秘密指令可能成為企業對付揭弊人的工具,以掩蓋不當或違法行為,而公開弊端資訊的揭弊人可能因洩漏營業秘密而有刑事責任。但主導該指令立法程序之歐洲議會議員Constance Le Grip表示,營業秘密指令會明確地將記者及揭弊人除罪化。
事實上,為了保障公共利益所為之揭露行為,執委會2013年提出的草案已納入揭弊人排除條款。根據草案第4條第2項規定,會員國應確保為了公共利益目的而揭露不當、錯誤或不法活動(revealing a misconduct, wrongdoing or illegal activity),不會觸犯(entitle)營業秘密法之任何罪名。換句話說,即便取得企業機密之方式違法,揭弊人為了公共利益之行為不會違反營業秘密指令。
歐盟營業秘密指令僅建立歐盟保障營業秘密之最低標準,若歐盟營業秘密指令順利通過,仍待會員國依據該指令各自立法,訂立境內營業秘密相關規範,以落實營業秘密之保護。
日本為提高農產品品質及附加價值,近年積極推動智慧農業,鼓勵利用AI等新技術研發農業產品和相關服務,惟技術研發需要使用大量資料訓練AI模型,部分農業工作者擔心自身經驗及知識等資料在研發過程中外洩,為避免上述狀況發生,農林水產省於2019年7月9日召開「農業AI利用契約指引檢討會」(農業分野におけるAIの利用に関する契約ガイドライン検討会),研議「農業AI利用契約指引」,防止在進行AI相關應用研發時,農業工作者提供之資料不慎外洩或遭到不當利用,導致其權益受損。 「農業AI利用契約指引檢討會」於2019年12月19日舉辦第3次會議,公布農業AI利用契約指引草案,草案內容包括(1)總論︰說明本指引之制定目的、農業與AI的關係,以及本指引與其他類似指引之差異和適用範圍;(2)農業AI產品、服務契約基本事項︰說明利用AI研發之農業產品和服務相關之智慧財產權,契約要件(契約目的及契約當事人等)及農業AI模型研發流程等基本概念;(3)農業AI產品、服務契約注意事項︰說明AI產品和服務契約之特徵和注意事項,以及利用AI等新技術進行研發之當事人訂定契約時應注意的問題,如農業工作者所提供之資料的重要性、以及個人資料的處理方式等;(4)契約範本︰針對農業AI研發契約、農業AI產品和服務利用契約,以及向第三方提供農業資料之契約,說明契約內容重點及提供範本供作參考。
美國新創企業啟動法(JOBS Act)聽證進展2014年7月24日美國眾議院金融服務資本市場附屬委員會(House of Representatives Committee on Financial Services’ Capital Markets Subcommittee)針對新創企業啟動法(Jumpstart Our Business Startups Act,簡稱JOBS法)舉行聽證,由證券交易委員會(United States Securities and Exchange Commission,簡稱SEC)企業融資處基思‧希金斯(Keith Higgins)處長(Director of the Division of Corporation Finance)向委員會說明。 各界對於JOBS法相當重視,委員們於聽證會中提出相關疑慮,處長回應包括: 期望今年底提出JOBS法所漏未規定之「存款與貸款」(savings and loans)部分之補救計畫(proposal)。 關於2013年SEC舉行之小型企業資本形成之企業論壇(Business Forum on Small Business Capital Formation)」之建議,例如創業者仰賴朋友與家人資助,仍應發行群眾募資證券(crowd-funding securities)給予此類非合格投資者(non-accredited investor)等,將部分建議納入考慮。 SEC正考慮將JOBS法原設定50萬美元的籌資門檻提高,以因應門檻(過低)對於群眾募資可能之負面影響。 本法提供股票初次上市的快速入口程序(onramp process),及快速成長公司(emerging growth companies)發行報告給潛在投資人,其執行緩慢原因在於投資人之顧慮,但相信此程序將經常被運用。 希金斯處長雖就部分疑慮進行解答,然後續仍須觀察SEC將如何完成JOBS法相關規範之制定與執行狀況。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
肯塔基州上訴法院認為,未經當事人同意即使用臉書上之tag功能標示出該當事人,並無違法美國肯塔基州上訴法院於月前駁回一名女子所提出的監護權認定案的上訴。該女子之上訴理由中提到:法院所據以決定監護權之證據之一,乃是未經她同意即被其他人標示出該女子姓名,並放在臉書(Facebook)上供人點閱、瀏覽的照片。但該州上訴法院並不同意這個看法,其在判決中指出:目前並無任何法律要求他人必須先取得該女子之同意後才能對之攝相,並上傳至臉書或其他網站;此外亦無任何法律規定其他人不得將該女子之姓名標示(tag)於這些照片上。 暫撇開其他法律不談,此一案件引人思考之與個人資料保護相關之處至少有二:首先,是關於法律適用的部分,亦即,如本案發生在日後個人資料保護法開始施行後的台灣,則該法第51條第1項(註1)之排除規定是否適用的問題;其二則是法律政策的部分,究竟在這個資訊數位化且易於搜尋的網路時代,為個人或家庭活動目的而毫無設限(例如本案之供不特定人瀏覽)的利用他人之個人資料是否確無為保護個人資料為著眼點之規範必要?(在肯塔基州這個案子裡,此一「無規範」的結果或許是正面的,但在其他的許多狀況,可能並非如此。) 註1:個人資料保護法第51條第1項:「有下列情形之一者,不適用本法規定:一、自然人為單純個人或家庭活動之目的,而蒐集、處理或利用個人資料。二、於公開場所或公開活動中所蒐集、處理或利用之未與其他個人資料結合之影音資料。」