新加坡政府在2016年05月05日發表了數位平台「MyInfo」。
新加坡政府推出此一平台的目標是「以數位方式來整合目前的工作,去除現行的不便與散亂,讓民眾與政府打交道時更輕鬆 」。因此,「MyInfo」將每個新加坡公民散在各政府機關間的個人資料整合成單一檔案,使用者也可以自行決定加入額外的資訊,像是年收入、教育程度、就業情況以及家人資料。當民眾需要填寫不同的政府表單時,不需要再一直填寫重複的內容。
新加坡政府表示,每個公民可以自由決定他們要不要註冊MyInfo。當使用者選擇使用這項服務時,相關機關會針對可能被運用的資料先徵詢使用者的同意。
MyInfo計畫是由新加坡財政部與資訊通信發展管理局共同發起。新加坡政府的數位服務團隊在一年前左右開始設計這項服務,目前平台上仍持續在測試並改善使用者經驗。
MyInfo從2016年01月到04月試營運,已經有超過32,000人使用這項服務(佔新加坡總人口0.6%)。在2016年06月之前,MyInfo會提供15項服務,包括註冊公用住宅、更新報稅資料以及求職資訊等。到2018年,所有需要雙認證的數位服務都會整合在MyInfo平台,估計會有200項服務項目。
這個計畫是新加坡「數位政府」(Digital Government)政策的重要拼圖之一。新加坡政府將持續擴大MyInfo的服務項目,希望藉由此服務來蒐整更多資料,並增加可供政府機關間分享的個人資料數目。伴隨愈加豐富的數據資料,各政府部門更能事先了解民眾的需求並提出民眾真正需要的服務。
2021年1月6日,美國聯邦首席資料長委員會(Federal Chief Data Officers Council, 後稱CDO Council)向美國國會提交報告,報告中指出今年度的工作重點之一將放在促進聯邦政府跨機關的資料共享,以極大化政府資料的價值。 CDO Council是根據2018年的《實證決策基本法》(Foundations for Evidence-Based Policymaking Act of 2018)所設立,並於2020年1月正式召開第一次會議,該委員會的成員包含聯邦政府各部會的首席資料長(Chief Data Officers, CDO)。該委員會的任務是加強各部會利用資料作為戰略資產的能力,促進聯邦政府資料的管理、使用、保護、傳播和衍生,以達到聯邦資料戰略(Federal Data Strategy)所設定的目標。 美國農業部首席資料長兼CDO Council主席Ted Kaouk表示,以農業部所建置的農業資料共通平台(Ag DATA COMMONS)為例,農業部所屬機關間透過資料共享,已產生許多應用。 譬如:該部所屬的食品與營養局(Food and Nutrition Service, FNS)利用經濟研究局(Economic Research Service, ERS)統計的糧食不安全(Food Insecurity)資料,推動食物箱計畫(Farmers to Families Food Box Program);農業部所屬風險管理局(Risk Management Agency, RMA)使用平台上其他單位的資料,作為作物保險(crop insurance)的決策依據;農業部所屬食品安全和檢驗局(Food Safety and Inspection Service, FSIS)使用平台上其他單位的資料,來追蹤肉品加工廠的狀況。 CDO Council於去(2020)年10月成立了一個資料共享工作小組(Data Sharing Working Group),負責研究聯邦政府各機關間資料共享的使用案例,希望透過這樣的努力,強化聯邦政府的資料治理,產生高品質與即時性的資料,以此作為政府的決策依據。
歐盟執委會正式提案,授權各國決定是否開放種植基因改造作物歐盟執委會於7月13日正式提案,會員國得在各自領土範圍內決定准許、限制或全面禁止基因改造作物的栽種。執委會的提案內容包括對於基因改造作物與非基因改造作物的共存(在同一區域內栽種)管制建議,同時也提出修正條文草案建議供各國於修正各國內有關基因改造作物相關法律的參考。執委會的提案修正了歐盟2001/18/EC指令(Directive 2001/18/EC)使得各會員國可因地制宜考量,自行決定基因改造作物的允許栽種與否。 執委會的提案源自今年三月時對會員國的承諾。歐盟健康與消費政策委員會的主席表示,執委會此提案兌現了當時要在今年夏天結束歐盟各國對基因改造作物的爭議的承諾,此同時他也強調歐盟現行以科學為基礎的授權機制並非完全廢除,全面性的安全評估與監控系統仍繼續運作,這也是歐盟對基因改造作物耕種給予各國彈性措施的同時對安全基本把關的表現。 歐盟原有的規定訂有基因改造作物與非基因改造作物0.9%共存門檻(labellingthreshold,指由受驗作物全部基因中所含改造基因的比例判斷是否為基因改造作物的標準),各會員國必須立法採行有關措施(如作物田的間距)以符合該項要求。 但過去幾年的運作經驗發現,耕作非基因改造作物農民的潛在損失並不限於因為所產作物超過該門檻,某些案例中,基因改造有機物殘存於食品中,反而使得想要將食品以不含基因改造有機物產品販賣者造成損失。執委會新的建議案給予各國調整該共存門檻的權力,同時,各國也可以成立非基因改造專區等。2001/18/EC指令的修正條文(第26b條)將適用於所有的基因改造有機物,各國得自行決定限制或禁止其境內的基因改造作物耕種,無須執委會的授權,但須在境內措施施行一個月內通知歐盟各國及執委會。執委會的提案將在歐洲議會及歐洲理事會通過後正式施行。 對於此一即將於歐盟施行的新基因改造作物耕種規範,生技產業顯然有不同意見,依照生技業者協會EuropaBio的聲明,他們認為新規範充滿對新科學的偏見且阻礙農民的自由選擇權。基於產業的觀點,新的規範架構也有疑慮,例如:0.9%的門檻下放各國自行決定調整,往後將引起權責機關以及農民、買家、以及有關產業製造商之間的爭議;新措施也造成對歐盟內部市場的壁壘—造成歐盟境內國家的或區域的限制林立,而與歐盟的基本原則相悖;最後,對於科學的偏見與歐洲食品安全局(EFSA)的聲譽之影響也是一大隱憂。 歐盟對基因改造作物的立場一直尚未定調,新規範亦僅只是採取「下放」給各國自行決定的作法,惟實際上的運作,綜合當前對基因改造作物之安全性充滿疑慮與爭議的氛圍下,各國未來自行訂定規範將更寬或更嚴,後續發展如何有待密切觀察。
對微軟每月定期公佈針對IE程式脆弱性修補程式為攻擊目標的網路攻擊正在發生-針對公佈PoC有發生大規模攻擊之虞雖然微軟才針對「Internet Explorer」弱點「CVE-2012-1875」剛公佈修補程式不久,但針對「CVE-2012-1875」的為攻擊目標的網路攻擊正在發生。 因為作業準則(PoC)也已經公佈,有可能會發展成大規模的網路攻擊。日本IBM的Tokyo SOC也已經確認發生針對脆弱性的惡意攻擊,並將攻擊的報告公佈在該中心的部落格上。經該中心分析現在攻擊的範圍雖然「非常限縮」,但是標的型攻擊的可能性非常的高。 也正因為作業準則(PoC)也已經公佈,也將被預測到發生大規模攻擊,微軟也呼籲儘速下載修補程式對程式弱點進行修補,避免遭到攻擊 。 微軟針對「CVE-2012-1875」的弱點在6月13日每月定期公佈的資訊安全性更新程式「MS12-037」進行修補。在6月13日公佈的時間點雖然已經確認發生惡意攻擊的資訊安全安事件,也已經透過非公開管道向微軟報告,但微軟並沒有公開確認弱點的存在。
世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。 包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。 在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。 綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。